基于改进深度卷积神经网络的步态识别算法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN953;TP391

基金项目:

广东省教育厅2016年青年创新项目(JYT2016004)、广东省教育厅2018年特色创新项目(2018GXJK180)、广东省重大科技计划(2014B040404069,2014A020218016)、广东省自然科学基金(7010116)资助项目


Gait recognition algorithm based on improved deep convolution neural network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统步态识别算法因服饰携带物变换、视角等协变量因素变化导致的识别能力下降问题,提出了一种基于改进深度卷积神经网络的步态识别算法。该算法利用分层处理机制从步态数据中提取步态特征,能够降低常见变化和遮挡等情况对识别精度的影响,同时,算法根据实验确定了网络中每层特征图的最佳数量、特征图的最佳尺寸以及要用于步态识别的输入特征的类型,能够处理相对较小的数据集而无需使用任何增强或微调技术。CASIAB步态数据库仿真实验表明,所提出的卷积神经网络覆盖了交叉视图步态识别和无主题的步态识别问题,能够克服与步态识别相关的协变量因素问题,具有更优的步态识别精度。

    Abstract:

    Aiming at the problem of traditional gait recognition algorithm due to the change of clothing and the change of covariate factors such as perspective, this paper proposes a gait recognition algorithm based on improved deep convolutional neural network. The algorithm uses the layered processing mechanism to extract the gait features from the gait data, which can reduce the impact of common changes and occlusion on the recognition accuracy. At the same time, the algorithm determines the optimal number of features of each layer in the network according to experiments. The optimal size of the graph and the type of input features to be used for gait recognition can handle relatively small data sets without any enhancement or finetuning. CASIAB gait database simulation experiments show that CNN proposed in this paper covering the gait recognition problem of cross view gait recognition and no subject, it can overcome the covariate factor problem related to gait recognition, and has better gait recognition accuracy.

    参考文献
    相似文献
    引证文献
引用本文

卢来,邓文,吴卫祖.基于改进深度卷积神经网络的步态识别算法[J].电子测量与仪器学报,2019,33(2):88-93

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-04
  • 出版日期:
文章二维码