基于超声图像的生物组织损伤判定方法研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP274

基金项目:

国家自然科学基金(11774088,11474090,61502164)、湖南省自然科学基金(2016JJ3090)资助项目


Research on identification method of biological tissue lesion based on ultrasound images
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对高强度聚焦超声(HIFU)治疗的生物组织变性监测,提出一种基于超声图像灰度梯度共生矩阵和模糊C均值聚类(FCM)的生物组织损伤判定方法。首先对新鲜离体猪肉组织进行高强度聚焦超声辐照,对采集到的超声图像进行预处理后提取减影图像的灰度梯度共生矩阵的灰度熵、混合熵作为组织损伤判定的表征参数,再使用FCM聚类方法对特征参数进行聚类判别。实验结果表明,结合灰度熵与混合熵的多参数判定比单参数灰度熵、混合熵判定的识别率更高,相比灰度均值与小波系数结合方法,其识别率提高323%。可以更准确地判定在高强度聚焦超声治疗过程中的组织损伤状况。如进一步与无损测温相结合,可进一步提高高强度聚焦超声的疗效。

    Abstract:

    In order to monitor the biological tissue lesion when using HIFU to treat, a method that biological tissue lesion identification based on ultrasound image by Graylevelgradient cooccurrence matrix and FCM clustering is proposed. First, obtaining ultrasound images of fresh pork tissue which irradiated by high intensity focused ultrasound and extract parameters of Gray levelgradient cooccurrence matrix after preprocessing. The parameters of gray entropy and entropy of mixing are the characterization parameter of identification of biological tissue lesion. And then using FCM clustering method to analysis. The results show that the rate of identification is higher when combining Gray entropy with entropy of mixing to identify biological tissue lesion than signal parameter, which is 332 percentage more than that gray average and wavelet transform coefficient method. Thus,this method can better identify tissue lesion in the course of HIFU treatment. The method is helpful to improve the efficacy of HIFU treatment, relating the noninvasive temperature measurement with tissue lesion identification further.

    参考文献
    相似文献
    引证文献
引用本文

陈兴,丁亚军,钱盛友,郭燕.基于超声图像的生物组织损伤判定方法研究[J].电子测量与仪器学报,2019,33(1):171-176

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-04
  • 出版日期:
文章二维码