车辆曲面重构中点云精简算法的研究与改进
CSTR:
作者:
作者单位:

1.合肥工业大学 计算机与信息学院合肥230009;2.合肥工业大学 汽车研究院合肥230009

作者简介:

通讯作者:

中图分类号:

TP391.41;TN249

基金项目:

国家重点研发计划项目(JZ2016ZDYF1065)资助


Research and improvement of point cloud simplification algorithm in vehicle surface reconstruction
Author:
Affiliation:

1.School of Computer and Information, Hefei University of Technology, Hefei 230009, China; 2.Automobile Research Institute, Hefei University of Technology, Hefei 230009, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决车辆点云数据曲面重构效率低和精简后数据重构模型质量差的问题,提出一种改进的点云精简算法。基于kdtree建立散乱点云数据的空间索引结构并获取每个数据点的k邻域索引;提出基于快速识别边界线的精简算法避免精简过程边界数据丢失,确保获得真实的车辆曲面重构模型;对非边界点邻域进行区域分类,并根据分类选择性保留邻域数据,以提高点云数据处理速度并减少内存开销。在实现了算法的程序设计及仿真实验的基础上,完成了基于三维激光扫描车辆外廓尺寸测量系统平台的实车实验。实验结果表明,改进后的精简算法程序最大限度地保留了车辆点云的的边界特征和细节形状,改善了车辆点云曲面重构模型质量;数据处理中能够精简45%~70%的车辆点云数据,加快了系统重构的速度,提高了车辆外廓测量的性能。

    Abstract:

    In order to solve the problem that the efficiency of surface reconstruction based on vehicle point cloud data is low and the quality of the reconstruction model based on simplified data is poor, an improved point cloud simplification algorithm is proposed. Firstly, a spatial index structure of the scattered cloud data is established with kdtree, which obtains the k neighborhood index of each data point. Secondly, a simplification algorithm based on fast identification of boundary lines is proposed to avoid the loss of boundary data in the process of reducing and ensure the real vehicle surface reconstruction model. Finally, the nonboundary point’s neighborhood is classified, and the neighborhood is reserved according to the classification, which accelerates the processing speed of point cloud data and reduces memory overhead. The paper not only designs the software program of the simplification algorithm and realizes the simulation experiment, but also carries out a real vehicle experiment on a platform of vehiclebody dimension measurement system based on the 3D laser scanning. The experimental results show that the improved algorithm preserves the boundary features and detail shapes of the vehicle point cloud to the maximum extent, which improves the quality of surface reconstruction. The improved simplification algorithm could reduce the vehicle point cloud data by 45% ~ 70%, therefore, it improves the speed of surface reconstruction of vehicle point cloud and enhances the performance of the vehiclebody dimension measurement system.

    参考文献
    相似文献
    引证文献
引用本文

王琼,王海燕,孙保群,夏光,徐超.车辆曲面重构中点云精简算法的研究与改进[J].电子测量与仪器学报,2017,31(11):1693-1701

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-01-08
  • 出版日期:
文章二维码