采用FCM聚类与改进SVR模型的窃电行为检测
CSTR:
作者:
作者单位:

昆明理工大学信息工程与自动化学院昆明650504

作者简介:

通讯作者:

中图分类号:

TM73;TP311

基金项目:


Electric larceny detectionusing FCM clustering and improved SVR model
Author:
Affiliation:

School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650504, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对窃电手段多样、隐蔽性强、窃电检测效率有待提高等问题,首先采用模糊C均值(FCM)聚类算法构造不同的用户负荷特征曲线,通过待测负荷曲线与相应特征曲线作对比初步确定疑似窃电用户;其次,采用粒子群算法优化的支持向量机回归模型对疑似窃电用户的用电行为进行检测。实验证明,所用方法缩小了窃电检测的范围、克服了窃电样本少的影响,改善了窃电检测的效率,并且窃电检测的均方误差和平均绝对误差分别提高了0.005 1和0.034。

    Abstract:

    Aiming atthe variety of electric larceny means,the efficiency of electric larceny detection remains improvement.Firstly, the fuzzy C mean clustering algorithm is used to construct different load characteristic curves of the user, and the suspiciouselectric larceny user is preliminarily determined by comparing the curves to be detected with the corresponding characteristic curve.Secondly,the particle swarm optimization support vector machine regression model is adopted to detect the behavior of suspected power stealing users.The experiments show that this method can reduce the range of electricity larcenydetection and overcome the influence of less electricity larcenysamples, improve the efficiency ofelectricity larcenydetection, and increasethe mean square error and average absolute error by 00051 and 0.034 respectively.

    参考文献
    相似文献
    引证文献
引用本文

康宁宁,李川,曾虎,李英娜.采用FCM聚类与改进SVR模型的窃电行为检测[J].电子测量与仪器学报,2017,31(12):2023-2029

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-01-24
  • 出版日期:
文章二维码