基于PCA-GA-RSPSVM的复合材料损伤检测技术研究
CSTR:
作者:
作者单位:

空军航空大学长春130022

作者简介:

通讯作者:

中图分类号:

TB33;TP391.9

基金项目:

装备维修科学与改革项目(2011325)资助


Research on damage detection technique of composite material based on PCAGARSPSVM
Author:
Affiliation:

Air Force Aviation University, Changchun 130022, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对复合材料损伤检测数据少、效率低等问题,提出一种基于主元分析(PCA)和改进的轮换对称分块支持向量机(RSPSVM)的损伤识别算法,并用其进行飞机复合材料构件损伤检测。首先,算法对平面多电极电容传感器检测模型等面积剖分,获取足够多复合材料检测样本;然后引入遗传算法(GA)改进RSPSVM获得更好的分类性能,并且结合PCA提取主特征向量用于降低特征向量维度和缩短训练时间,将新的特征集送入改进的RSPSVM算法,实现PCAGARSPSVM识别算法;最后,用3种复合材料样板的实测值对算法进一步验证。经过仿真数据与实测数据的验证,有效的验证了PCAGARSPSVM算法应用于飞机复合材料构件损伤检测的有效性。

    Abstract:

    Aiming at solving lacking of failure data and low efficiency of composite material damage detection, a fault diagnosis method based on principal component analysis(PCA)and support vector machine combined with the rotation symmetric partition(RSPSVM)was proposed. Firstly, the model of uniplanar multielectrode is partitioned into equal area units with rotation symmetry partition, and fault data is acquired adequately. Secondly, genetic algorithm(GA)was introduced into RSPSVM in order to promote the classification performance, and PCA was used to reduce the dimension of feature vector and shorten training time, the final features were put into improved RSPSVM so that PCAGARSPSVM was achieved. Finally, the measured data of three composite material samples were sent to PCAGARSPSVM for verification. After verification of the simulation data and the measured data, the effective certificate of general PCAGARSPSVM algorithm is applied to the diagnosis of damage of aircraft composite material.

    参考文献
    相似文献
    引证文献
引用本文

张宝印,董恩生.基于PCA-GA-RSPSVM的复合材料损伤检测技术研究[J].电子测量与仪器学报,2017,31(9):1402-1407

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-11-06
  • 出版日期:
文章二维码