基于VMD与自相关分析的滚动轴承故障特征提取
CSTR:
作者:
作者单位:

石家庄铁道大学电气与电子工程学院石家庄050043

作者简介:

通讯作者:

中图分类号:

TN710.1;TH213.3

基金项目:

国家自然科学基金(U1534204,11372199,11572206)、河北省然科学基金(A2014210142)资助项目


Rolling bearing fault feature extraction based on VMD and autocorrelation analysis
Author:
Affiliation:

School of Electronical and Electronics Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    滚动轴承故障信号多呈现非平稳、多分量调制特性,早期故障信号调制特性微弱、易受周围设备噪声干扰,导致轴承早期故障特征淹没在噪声信号中,故障特征难以提取。为此,提出一种变分模态分解(variational mode decomposition, VMD)与自相关分析相结合的轴承故障特征提取方法。首先利用自相关分析消除故障信号中噪声干扰,提取周期成分;然后再用VMD算法将消噪信号分解成若干本征模态分量(intrinsic mode function, IMF),运用能量算子对相关系数及峭度值较大分量进行解调分析;最后通过能量解调谱来判别滚动轴承故障类型。将该方法应用到滚动轴承仿真故障数据和实测数据中,结果表明,该方法可降低了噪声的干扰,有效提取故障特征频率,能够实现滚动轴承故障的精确诊断。

    Abstract:

    Early fault signal of rolling bearing usually presents nonstationary multicomponent characteristics, early fault features of bearing submerged in the background noise are difficult to identify because of the weak modulated characteristics and strong noise. Therefore, the fault diagnosis method based on variational mode decomposition (VMD) and autocorrelation analysis was proposed.At first, the noise was eliminated and the periodic components in signals were extracted by using autocorrelation analysis. Then VMD was used to decompose the denoised signal into many intrinsic mode functions and the IMFs of the biggest coefficient and kurtosis was selected and demodulated with Teager energy operator. At last, the bearing fault type was distinguished through the energy spectrum. The simulation experiments and practical engineering experiments have been carried out and the results show that this method is able to reduce the interference of noise and extract effectively the fault feature frequency, and realize accurate diagnosis for rolling bearing fault.

    参考文献
    相似文献
    引证文献
引用本文

张俊甲,马增强,王梦奇,阮婉莹.基于VMD与自相关分析的滚动轴承故障特征提取[J].电子测量与仪器学报,2017,31(9):1372-1378

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-11-06
  • 出版日期:
文章二维码