基于四阶非线性偏微分方程的图像去噪算法
作者:
作者单位:

1. 南京信息工程大学电子与信息工程学院南京210044;2. 南京信息工程大学江苏省大气环境与装备技术协同创新中心南京210044

中图分类号:

TP391.41;TN911.7

基金项目:

国家自然科学基金(61601229,11202106)、江苏省"信息与通信工程"优势学科建设项目、江苏省青蓝工程和江苏省高校自然科学研究项目(16KJB510022)资助


Image denoising algorithm based on nonlinear fourthorder PDE
Author:
Affiliation:

1. College of Electronic and Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; 2. Jiangsu Key Laboratory of Meteorological Observation and Information Processing, Nanjing University of Information Science and Technology, Nanjing 210044, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为了更好的实现图像模糊消除和有效地去除斑点噪声,提出了一种新的基于偏微分方程的图像去噪方法,它是基于非线性四阶扩散模型。首先提出了该非线性偏微分方程的方案,然后对微分模型进行数学处理,研究它的适定性,最后证明了此模型在一定条件下是适定的,并且存在了弱解,所得到的弱解近似于基于有限差分数值离散格式。实验结果表明,新模型在图像去噪和保边缘等细节信息方面都达到较好的效果,峰值信噪比有了大幅提高,去噪性能较经典模型更具优越性。

    Abstract:

    To provide a better image deblurring and remove successfully the speckle noise, a novel PDEbased image denoising approach is proposed in this paper. It is based on a nonlinear fourthorder diffusion model. The nonlinear PDE scheme is described first. Then, a mathematical treatment is provided for this differential model, its wellposedness being investigated. It is proved that the model is wellposed in some certain conditions and admits a weak solution. The weak solution of the obtained PDE is approximated by developing an explicit finitedifference based numerical discretization scheme. The experimental results show that the new model proposed in this paper can achieve good results in image denoising and preserving edges and other details. Compared with the classical model, the peak signal to noise ratio is greatly improved and the denoising performance is more better.

    参考文献
    [1]荣霞,薛伟,朱继超. 一种新的小波阈值函数在图像去噪中的应用[J]. 电子测量技术,2016,39(5):8488. RONG X, XUE W, ZHU J CH. New wavelet thresholding function in image denoising[J]. Electronic Measurement Technology,2016, 39(5): 8488.
    [2]郭海涛,徐雷. 一种抑制声呐图像散斑噪声的形态学滤波器[J]. 仪器仪表学报,2015,36(3):654660. GUO H T, XU L. A morphological filter for despeckling of a sonar image[J]. Chinese Journal of Scientific Instrument, 2015, 36(3):654660.
    [3]孙萍萍. 基于小波包理论的激波信号去噪研究[J]. 国外电子测量技术,2016,35(7):3842. SUN P P.Denoising of shack signal based on wavelet packet theory[J]. Foreign Electronic Measurement Technology, 2016, 35(7):3842.
    [4]曹风云,赵凯,王筱薇倩,等. 自适应水下彩色图像增强算法[J]. 电子测量与仪器学报,2016,30(5):772778. CAO F Y, ZHAO K, WANG X W Q, et al. An adaptive under water image enhancement algorithm [J].Journal of Electronic Measurement and Instrumentation, 2016, 30(5):772778.
    [5]彭扬,何传江,任泽民, 等. 结合Tsallis熵的各向异性扩散模型[J]. 计算机工程与设计,2014, 35 (1) :218222. PENG Y, HE CH J, REN Z M, et al. Local Tsallis entropy combined anisotropic diffusion model[J]. Computer Engineering and Design, 2014, 35 (1) :218222.
    [6]SURYA PRASATH V B, VOROTNIKOV D. Weighted and wellbalanced anisotropic diffusion scheme for image denoising and restoration[J]. Nonlinear Analysis Real World Applications, 2014, 17(6):3346.
    [7]TOHIDI E, ZAK M K. A new matrix approach for solving secondorder linear matrix partial differential equations[J]. Mediterranean Journal of Mathematics, 2016, 13(3):13531376.
    [8]JIDESH P, GEORGE S. Shock coupled fourthorder diffusion for image enhancement[J]. Computers & Electrical Engineering, 2012, 38(5):12621277.
    [9]LIU X Y, LAI C H, PERICLEOUS K A. A fourthorder partial differential equation denoising model with an adaptive relaxation method[J]. International Journal of Computer Mathematics, 2015, 92(3):608622.
    [10]HU B, QIU SH F, YANG ZH H, et al. The image denoising by fourthorder partial differential equations[J]. Journal of Jiangxi Normal University, 2016,40(6): 603607.
    [11]ZHANG W, LI J, YANG Y. Spatial fractional telegraph equation for image structure preserving denoising[J]. Signal Processing, 2015, 107:368377.
    [12]YIN X, ZHOU S. Image structurepreserving denoising based on difference curvature driven fractional nonlinear diffusion[J]. Mathematical Problems in Engineering, 2015, 2015(4):116.
    [13]ZHANG K B, GAO X B, LI X L. Single image superresolution with nonlocal means and steering kernel regression [J]. IEEE Transactions on Image Processing, 2012, 21 (11): 45444555.
    [14]HAJIABOLI M R. A Selfgoverning fourthorder nonlinear diffusion filter for image noise removal[J]. IPSJ Transactions on Computer Vision & Applications, 2010 (2):94103.
    [15]HAJIABOLI M R. An anisotropic fourthorder diffusion filter for image noise removal[J]. International Journal of Computer Vision, 2011, 92(2):177191.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

吴登辉,周先春,陈铭.基于四阶非线性偏微分方程的图像去噪算法[J].电子测量与仪器学报,2017,31(6):839-843

复制
分享
文章指标
  • 点击次数:3835
  • 下载次数: 16898
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2017-08-02
文章二维码