自适应粒子群集优化二维OSTU的图像阈值分割算法
CSTR:
作者:
作者单位:

1. 沈阳理工大学自动化与电气工程学院沈阳110159;2. 沈阳理工大学信息科学与工程学院沈阳110159

作者简介:

通讯作者:

中图分类号:

TP391.41;TN911.73

基金项目:

辽宁省自然科学基金(201602652)资助项目


Image threshold segmentation algorithm based on adaptive particle swarm optimization of twodimensional OSTU
Author:
Affiliation:

1. School of Automation and Electrical Engineering, Shenyang Ligong University, Shenyang 110159, China; 2. School of Information Science and Engineering, Shenyang Ligong University, Shenyang 110159, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决红外相机采集行人图片时图像分割效果问题,提出一种自适应粒子群优化二维OSTU的阈值分割算法。利用当前帧图像的灰度级和当前帧图像像素的邻域灰度级构成二元组,通过计算二者的均值和方差,建立二维最大类间方差模型,结合自适应粒子群集算法,估计出图像的最佳阈值,该方法不仅能够准确估计阈值且计算时间减少。仿真结果表明,阈值最佳时,当结合自适应粒子群集优化算法后计算时间减少到原来的50%,所提出的算法能够快速准确得到最佳阈值,提高了图像预处理的分割效果。

    Abstract:

    In order to solve the effect of the image segmentation when the pedestrian image is collected by infrared camera, an image threshold segmentation algorithm based on adaptive particle swarm optimization of twodimensional OSTU is utilized. The gray scale of the current frame image and the neighborhood gray level of the current frame image pixel form a binary image. A 2D maximum betweencluster variance model is built up through calculating the average and variance between them, and combining with adaptive particle swarm optimization algorithm the best threshold image value is estimated. The algorithm can accurately estimate the threshold and reduce the calculation time. The simulation results demonstrate that the best image value is proper, the calculation time is shortened 50% when combine with adaptive particle swarm optimization algorithm. The proposed algorithm can get the optimal threshold quickly and accurately, and improve the segmentation effect of image preprocessing.

    参考文献
    相似文献
    引证文献
引用本文

于洋,孔琳,虞闯.自适应粒子群集优化二维OSTU的图像阈值分割算法[J].电子测量与仪器学报,2017,31(6):827-832

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-08-02
  • 出版日期:
文章二维码