大矩阵压缩特征目标的低秩跟踪算法
作者:
作者单位:

沈阳理工大学信息科学与工程学院沈阳110159

中图分类号:

TP391

基金项目:

辽宁省自然科学基金指导计划(2016010993301)、辽宁省教育厅(LG201609)、沈阳理工大学博士启动(BS201503)资助项目


Lowrank object tracking algorithm based on large matrix and compressed feature
Author:
Affiliation:

School of Information Science and Engineering, Shenyang Ligong University, Shenyang 110159, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对压缩感知的矩阵低秩稀疏分解目标跟踪算法实时性差的问题,提出一种大矩阵压缩特征目标的低秩跟踪算法。该算法通过将大矩阵分成多个小矩阵的方法构建观测矩阵,进行矩阵低秩稀疏分解,获得各候选目标的误差向量并构建误差矩阵,求解误差矩阵列向量最小1范数问题得到跟踪结果。为了适应跟踪过程中目标外观信息的变化,基于向量相似度判别有选择地更新字典。在跟踪结果不可信时,利用轨迹修正更新当前帧跟踪结果。通过6个典型视频序列上的对比实验,新算法的实时性是原算法的3倍。实验结果表明,在目标发生部分遮挡、光照变化、快速运动时,所提出的算法能实现目标的鲁棒跟踪。

    Abstract:

    In order to improve the instantaneity of the tracking method based on sparse and lowrank matrix decomposition, a lowrank object tracking algorithm based on large matrix and compressed feature is proposed in this paper. The matrix is decomposed sparsely and lowrankly by creating observation matrix using segmenting the large matrix into some parts. Then the error vector of each candidate object is obtained and an error matrix is built. The tracking result is gained by resolving the least 1norm of the error matrix. To adapt to the changes of target appearance, the dictionary is selectively updated based on the discrimination of vector similarity. When the tracking result is not trusted, it is updated by trajectory rectification. The instantaneity of the new algorithm is three times the old one via the comparison results on six typical sequences. The experiments demonstrate that the proposed algorithm can track the object accurately and robustly when there is part occlusion, illumination change and fast motion.

    参考文献
    [1]孔繁锵,王丹丹,沈秋.L1-L2范数联合约束的鲁棒目标跟踪[J].仪器仪表学报,2016,37(3): 690697. KONG F Q,WANG D D,SHEN Q. Robust object tracking via L1-L2 norm simultaneous constraint[J]. Chinese Journal of Scientific Instrument,2016,37(3):690697.
    [2]任航.基于拟蒙特卡洛滤波的改进式粒子滤波目标跟踪算法[J].电子测量与仪器学报,2015,29(2):289295. REN H. Improved particle filter target tracking algorithm bvased on Quasi Monte Carlo filtering[J]. Journal of Electronic Measurement and Instrumentation, 2015,29(2): 289295.
    [3]JIA X, LU H, YANG M H. Visual tracking via adaptive structural local sparse appearance model[C].IEEE Conference on Computer Vision and Pattern Recognition, IEEE Computer Society, 2012:18221829.
    [4]ZHANG K H, ZHANG L, YANG M H. Realtime compressive tracking[C]. European Conference on Computer Vision, 2012:864877.
    [5]杨大为,丛杨,唐延东.基于粒子滤波与稀疏表达的目标跟踪方法[J].模式识别与人工智能,2013,26(7): 680687. YANG D W,CONG Y,TANG Y D. Object tracking method based on particle filter and sparse representation[J]. Pattern Recognition and Artificial Intelligence, 2013,26(7):680687.
    [6]罗子安,毛征,孟灿.基于一致性特征点匹配的目标跟踪算法实现[J].国外电子测量技术,2016,35(9):4549. LUO Z AN, MAO ZH, MENG C. Based on consensus feature point matching of object tracking algorithm[J]. Foreign Electronic Measurement Technology, 2016,35(9): 4549.
    [7]CANDèS E J, ROMBERG J, TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2):489509.
    [8]CANDS E J, TAO T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12): 42034215.
    [9]DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4):12891306.
    [10]李攀,黄黎青,宋允东.基于掩膜预处理的稀疏表示和压缩感知图像重建[J].电子测量技术,2015,38(8): 7981. LI P, HUANG L Q,SONG Y D. The reconstruction of compressive sensing and sparse representation based mask pretreatment[J]. Electronic Measurement Technology, 2015,38(3): 7981.
    [11]CANDS E J, LI X D, MA Y,et al. Robust principal component analysis?[J]. Journal of the ACM, 2011, 58 (3):173.
    [12]LIN Z,CHEN M,MA Y,et al.The augmented lagrange multiplier method for exact recovery of corrupted lowrank matrices[D]. Illinois: University of Illinois, 2010.
    [13]AVIDAN S. Ensemble tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(2): 261271.
    [14]BEYGELZIMER A, KALE S, LUO H. Adaptive compressive tracking via online vector boosting feature selection[J]. Computer Science, 2015: 23232331.
    [15]WU Y, LIM J, YANG M H. Online object tracking: A benchmark[C]. IEEE Conference on Computer Vision & Pattern Recognition, 2013:24112418.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨大为,刘占林,王琰.大矩阵压缩特征目标的低秩跟踪算法[J].电子测量与仪器学报,2017,31(6):833-838

复制
分享
文章指标
  • 点击次数:2916
  • 下载次数: 17058
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2017-08-02
文章二维码