船舶轨迹异常检测方法研究进展
作者:
作者单位:

1.北京交通大学交通运输学院北京100044; 2. 集美大学航海学院厦门361021

中图分类号:

U676.1;TN99

基金项目:

国家自然科学基金(61672002,61272029,41501490)、福建省自然科学基金(2016J01243)、福建省教育厅基金(JA14182)、集美大学李尚大基金(ZC2011018)资助项目


Research progress on anomaly detection in vessel tracking
Author:
Affiliation:

1. School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044,China; 2. Navigation College, Jimei University, Xiamen 361021, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [59]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    近年来,异常检测技术在分析和利用船舶轨迹数据中扮演着越来越重要的角色,已经成为航海领域的一个热点研究方向。船舶轨迹的异常检测旨在利用相关的异常检测算法,研究船舶个体或群体的行为特征,发现隐藏在其中的船舶异常行为模式或船位。主要从船舶位置和行为方面分析了船舶异常行为的概念和分类,综述了船舶轨迹异常检测的方法,评述了各方法在船舶轨迹异常检测中应用的优点和不足,讨论了船舶轨迹异常检测存在的问题和面临的挑战。

    Abstract:

    In recent years, anomaly detection plays a more and more important role in the analysis and utilization of vessel trajectory data, and has become a hot research direction in the field of navigation. The aims of detecting abnormal vessel trajectory are to study the behavioral characteristics of individuals or groups vessel and find traffic patterns and traffic characteristics hidden inside. The concept and classification of abnormal behavior of vessels are analyzed mainly from the aspects of ship position and behavior, the recent theoretical research progress in detecting abnormal vessel trajectory is summarized, the advantages and disadvantages of each method used are reviewed, and the problems and challenges in the detection of abnormal vessel trajectory are discussed finally.

    参考文献
    [1]VESPE M, VISENTINI I, BRYAN K, et al. Unsupervised learning of maritime traffic patterns for anomaly detection[C]. 9th IET Data Fusion & Target Tracking Conference (DF&TT 2012): Algorithms & Applications, 2012: 15.
    [2]MENG Z, YAO D, BAI L, et al. Wind estimation around the shipwreck of Oriental Star based on field damage surveys and radar observations[J]. Science Bulletin, 2016, 61(4):330337.
    [3]吴亚军. “岁月号”沉没原因探讨[J]. 南通航运职业技术学院学报, 2014, 13(3):2426. WU Y J. Research on the causes of the “SEWOL” accident[J]. Journal of Nantong Vocational & Technical Shipping College, 2014, 13(3):2426.
    [4]梁亚声, 徐欣. 数据挖掘原理、算法与应用[M]. 北京: 机械工业出版社, 2014. LIANG Y SH, XU X. Principles, Algorithms and Applications of Data Mining[M]. Beijing: Machinery Industry Press, 2014.
    [5]HAWKINS D. Identification of Outliers[M]. London: Chapman and Hal1,1980.
    [6]张树波, 唐强荣. 基于 AIS 数据的船舶异常行为检测方法[J]. 人工智能与机器人研究, 2015, 4(4): 2331. ZHANG SH B, TANG Q R. Abnormal vessel behavior detection based on AIS data[J]. Artificial Intelligence and Robotics Research, 2015, 4(4): 2331.
    [7]LANE R O, NEVELL D A, HAYWARD S D, et al. Maritime anomaly detection and threat assessment[C]. 3th Conference on Information Fusion (FUSION), IEEE, 2010: 18.
    [8]LAXHAMMAR R. Anomaly detection for sea surveillance[C]. 11th International Conference on Information Fusion, IEEE, 2008: 18.
    [9]KRAIMAN J B, AROUH S L, WEBB M L. Automated anomaly detection processor[C].AeroSense 2002, International Society for Optics and Photonics, 2002: 128137.
    [10]RISTIC B, SCALA B L, MORELANDE M, et al. Statistical analysis of motion patterns in AIS data: Anomaly detection and motion prediction[C]. 11th International Conference on Information Fusion, IEEE, 2008: 17.
    [11]甄荣, 邵哲平, 潘家财,等. 基于统计学理论的船舶轨迹异常识别[J]. 集美大学学报:自然科学版, 2015, 20(3):193197. ZHEN R, SHAO ZH P, PAN J C, et al. A study on the identification of abnormal ship trajectory based on statistic theories[J].Journal of Jimei University:Natural Science, 2015, 20(3): 93197.
    [12]MUDA Z, YASSIN W, SULAIMAN M N, et al. Kmeans clustering and naive bayes classification for intrusion detection[J]. Journal of IT in Asia, 2016, 4(1): 1325.
    [13]SAADA M, MENG Q. An efficient algorithm for anomaly detection in a flight system using dynamic bayesian networks[C].International Conference on Neural Information Processing. Berlin Heidelberg: Springer, 2012: 620628.
    [14]刘浩然, 吕晓贺, 李轩,等. 基于Bayesian改进算法的回转窑故障诊断模型研究[J]. 仪器仪表学报, 2015, 36(7):15541561. LIU H R, LV X H, LI X, et al. A study on the fault diagnosis model of rotary kiln based on an improved algorithm of Bayesian[J].Chinese Journal of Scientific Instrument, 2015,36(7): 15541561.
    [15]TYLMAN W. Anomalybased intrusion detection using Bayesian networks[C]. 3rd International Conference on Dependability of Computer Systems, DepCosRELCOMEX’08, IEEE, 2008: 211218.
    [16]CANSADO A, SOTO A. Unsupervised anomaly detection in large databases using Bayesian networks[J]. Applied Artificial Intelligence, 2008, 22(4): 309330.
    [17]LOY C C, XIANG T, GONG S. Detecting and discriminating behavioural anomalies[J]. Pattern Recognition, 2011, 44(1): 117132.
    [18]HELLDIN T, RIVEIRO M. Explanation methods for bayesian networks: Review and application to a maritime scenario[C].Proceedings of the 3rd Annual Skvde Workshop on Information Fusion Topics, 2009: 1116.
    [19]JOHANSSON F, FALKMAN G. Detection of vessel anomaliesa bayesian network approach [C]. 3rd International Conference on Intelligent Sensors, Sensor Networks and Information, IEEE, 2007: 395 400.
    [20]MASCARO S, KORB K B, NICHOLSON A E. Learning abnormal vessel behaviour from ais data with bayesian networks at two time scales[J]. Tracks a Journal of Artists Writings, 2010:134.
    [21]MASCARO S, NICHOLSO A E, KORB K B. Anomaly detection in vessel tracks using Bayesian networks[J]. International Journal of Approximate Reasoning, 2014, 55(1): 8498.
    [22]CASTALDO F, PALMIERI F A N, BASTANI V, et al. Abnormal vessel behavior detection in port areas based on dynamic bayesian networks[C]. 17th International Conference on Information Fusion (FUSION), IEEE, 2014:17.
    [23]PORTNOY L, ESKIN E, STOLFO S. Intrusion detection with unlabeled data using clustering[C].In Proceedings of ACM CSS Workshop on Data Mining Applied to Security 2001: 58.
    [24]LAXHAMMAR R. Artificial intelligence for situation assessment[D]. Stockholm: Royal Institute of Technology, 2007.
    [25]KRAIMAN J B, AROUH S L, WEBB M L. Automated anomaly detection processor[C]. Aero Sense 2002, International Society for Optics and Photonics, 2002: 128137.
    [26]RHODES B J, BOMBERGER N A, SEIBERT M, et al. Maritime situation monitoring and awareness using learning mechanisms[C].MILCOM 20052005 IEEE Military Communications Conference, 2005: 646652.
    [27]LE GUILLARME N, LEROUVREUR X. Unsupervised extraction of knowledge from SAIS data for maritime situational awareness[C]. 16th International Conference on Information Fusion (FUSION), IEEE, 2013: 20252032.
    [28]PALLOTTA G, VESPE M, BRYAN K. Vessel pattern knowledge discovery from AIS data: A frame work for anomaly detection and route prediction[J]. Entropy, 2013,15(6): 22182245.
    [29]OSEKOWSKA E, CARLSSON B. Learning maritime traffic rules using potential fields[C].International Conference on Computational Logistics. Berlin:Springer International Publishing, 2015: 298312.
    [30]OSEKOWSKA E, AXELSSON S, CARLSSON B. Potential Fields in Modeling Transport over Water[M]. Berlin:Springer International Publishing, 2015:259280.
    [31]OSEKOWSKA E, JOHNSON H, CARLSSON B. Grid size optimization for potential field based maritime anomaly detection[C]. 17th Meeting of the EURO Working Group on Transportation, 2014: 720729.
    [32]DAHLBOM A, NIKLASSON L. Trajectory clustering for coastal surveillance[C]. 10th International Conference on Information Fusion, IEEE, 2007: 18.
    [33]BOSER B E, GUYON I M, VAPNIK V N. A training algorithm for optimal margin classifiers[C]. Proceedings of the 5th Annual Workshop on Computational Learning Theory, ACM, 1992: 144152.
    [34]何静, 刘林凡, 张昌凡, 等. 参数优化的支持向量机机车车轮状态检测[J]. 电子测量与仪器学报, 2016,30(11): 17091717. HE J, LIU L F, ZHANG CH F, et al. Parameter optimization of support vector machine for locomotive wheel state detection[J]. Journal of Electronic Measurement and Instrumentation, 2016,30(11): 17091717.
    [35]项前, 徐兰, 刘彬,等. 基于粗糙集与支持向量机的加工过程异常检测[J]. 计算机集成制造系统, 2015, 21(9):24672474. XIANG Q, XU L, LIU B, et al. Processing anomaly detection based on rough set and support vector machine[J]. Computer Integrated Manufacturing Systems, 2015, 21(9):24672474.
    [36]焦卫东, 林树森. 整体改进的基于支持向量机的故障诊断方法[J]. 仪器仪表学报, 2015, 36(8):18611870. JIAO W D,LIN SH S. Overallimproved fault diagnosis approach based on support vector machine[J]. Chinese Journal of Scientific Instrument, 2015, 36(8):18611870.
    [37]SHANG W, LI L, WAN M, et al. Industrial communication intrusion detection algorithm based on improved oneclass SVM[C]. World Congress on Industrial Control Systems Security (WCICSS), IEEE, 2015: 2125.
    [38]刘敬, 谷利泽, 钮心忻,等. 基于单分类支持向量机和主动学习的网络异常检测研究[J]. 通信学报, 2015, 36(11):136146. LIU J, GU L Z, NIU X X, et al. Research on network anomaly detection based on oneclass SVM and active learning[J]. Journal on Communications, 2015, 36(11):136146.
    [39]HANDAYANI D O D, SEDIONO W, SHAH A. Anomaly detection in vessel tracking using support vector machines (SVMs)[C]. International Conference on Advanced Computer Science Applications and Technologies (ACSAT), IEEE, 2013: 213217.
    [40]HANDAYANI D O D, SEDIONO W, SHAH A. Identification of vessel anomaly behavior using support vector machines and bayesian networks[C]. International Conference on Computer and Communication Engineering (ICCCE), IEEE, 2014: 258261.
    [41]HACHAJ T, OGIELA M R. Application of neural networks in detection of abnormal brain perfusion regions[C]. Neurocomputing, 2013, 122: 3342.
    [42]DE LA HOZ E, DE LA HOZ E, ORTIZ A, et al. PCA filtering and probabilistic SOM for network intrusion detection[C]. Neurocomputing, 2015, 164: 7181.
    [43]WANG S, HUANG Y, LI L, et al. Wind turbines abnormality detection through analysis of wind farm power curves[C]. Measurement, 2016, 93: 178188.
    [44]孙建平, 王逢瑚, 胡英成. 基于声发射和神经网络的木材受力损伤过程检测[J]. 仪器仪表学报, 2011, 32(2): 342347. SUN J P, WANG F H, HU Y CH. Damage process testing of wood under loads based on acoustic emission and neural network[J]. Chinese Journal of Scientific Instrument, 2011, 32(2):342347.
    [45]ZHAI X, APPIAH K, EHSAN S, et al. A method for detecting abnormal program behavior on embedded devices[J]. IEEE Transactions on Information Forensics and Security, 2015, 10(8): 16921704.
    [46]杨青川, 杨青, 姚鑫,等. 基于移动窗FICA和SOM方法的心动异常诊断[J]. 南京理工大学学报, 2013, 37(4): 530535. YANG Q CH, YANG Q, YAO X, et al. Diagnosis of abnormal echocardiography based on moving window FICA and SOM[J]. Journal of Nanjing University of Science and Technology, 2013, 37(4): 530535.
    [47]RHODES B J, BOMBERGER N A, SEIBERT M, et al. Maritime situation monitoring and awareness using learning mechanisms[C].MILCOM 20052005 IEEE Military Communications Conference, 2005: 646652.
    [48]CARPENTER G A, GROSSBERG S, REYNOLDS J H. ARTMAP: Supervised realtime learning and classification of nonstationary data by a selforganizing neural network[J]. Neural networks, 1991, 4(5): 565588.
    [49]CARPENTER G A, GROSSBERG S, MARKUZON N, et al. Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps[J]. IEEE Transactions on neural networks, 1992, 3(5): 698713.
    [50]BOMBERGER N A, RHODES B J, SEIBERT M, et al. Associative learning of vessel motion patterns for maritime situation awareness[C]. International Conference on Information Fusion. 2006:18.
    [51]RHODES B J, BOMBERGER N A, ZANDIPOUR M. Probabilistic associative learning of vessel motion patterns at multiple spatial scales for maritime situation awareness[C]. 10th International Conference on Information Fusion, IEEE, 2007:18.
    [52]任磊, 杜一, 马帅,等. 大数据可视分析综述[J]. 软件学报, 2014, 25(9):19091936. REN, DU Y, MA SH, et al. Visual analytics towards big data[J]. Journal of Software, 2014, 25(9): 19091936.
    [53]汪飞,张繁,吴斐然,等. 面向多源城市出行数据的可视化查询模型[J]. 计算机辅助设计与图形学学报, 2016 28(1):2531. WANG F, ZHANG F, WU F R, et al. A Visual query model for multisource urban mobility data[J]. Journal of ComputerAided Design & Computer Graphics, 2016 28(1):2531.
    [54]VON LANDESBERGER T, BRODKORB F, ROSKOSCH P, et al. Mobility graphs: Visual analysis of mass mobility dynamics via spatiotemporal graphs and clustering[J]. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(1): 1120.
    [55]邵超, 张啸剑. 基于通勤时间距离的流形聚类与可视化[J]. 计算机研究与发展, 2015, 52(8): 17571767. SHAO CH, ZHANG X J. Manifold clustering and visualization with commute time distance[J]. Journal of Computer Research and Development, 2015, 52(8): 17571767.
    [56]CABAN J J, GOTZ D. Visual analytics in healthcareopportunities and research challenges[J]. Journal of the American Medical Informatics Association, 2015, 22(2): 260262.
    [57]CHEN V Y, RAZIP A M, KO S, et al. Multiaspect visual analytics on largescale high dimensional cyber security data[J]. Information Visualization, 2015, 14(1): 6275.
    [58]ROELAND S, NIELS W, HUUB V D W, et al. Composite density maps for multivariate trajectories[J]. IEEE Transactions on Visualization & Computer Graphics, 2011, 17(12): 2518 2527.
    [59]RIVEIRO M J. Visual analytics for maritime anomaly detection[D]. Sweden: University of Skvde, 2011.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周世波,徐维祥.船舶轨迹异常检测方法研究进展[J].电子测量与仪器学报,2017,31(3):329-337

复制
分享
文章指标
  • 点击次数:4628
  • 下载次数: 19529
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2017-07-20
文章二维码