海洋工程装备制造现场大尺寸组网测量
作者:
作者单位:

1. 天津大学国家重点实验室天津300072;2. 国网河北省电力公司石家庄050021

中图分类号:

TH744.5

基金项目:

天津市科技兴海项目(KJXH201408)资助


Largescale network measurement in the field of marine engineering equipment manufacturing
Author:
Affiliation:

1. State Key Laboratory of Precision Measuring Technology and Instruments,Tianjin University, Tianjin 300072,China; 2. State Grid Hebei Electric Power Company,Shijiazhuang 050021,China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为满足海洋工程高端装备的制造与装配过程中对宏观测量大尺寸和局部细节高精度的双重要求,提出了一种构建全局控制网络并优化转站精度的方法。在研究激光跟踪仪测量规律的基础上,对激光跟踪仪测量过程中误差的传递建立了数学模型,并据此来预测跟踪仪在单点测量时的不确定度。试验证明实际测量与仿真数据具有较好的一致性。基于该试验结果,预先为激光跟踪仪测量的全局控制点分配权重,并把权重融入奇异值分解法(SVD)中,求得转站参数。使用均方根法(RMS),与普通SVD法相比较,发现带权重的SVD法具有统计学意义上的优化性。使用转站参数的评价方法分析了转站精度,利用整体最小二乘法,综合考虑两个测站的测量误差,分析出影响转站精度的因子,为后续研究转站精度的提高打下基础。

    Abstract:

    In order to meet the double requirements which are the largescalein measurement range and highprecision in local detail in the manufacturing and assembly process of marine engineering,a method to construct the global control network and optimize the transfer station is presented in this paper.Based on the research on the rules of the measurement process of laser tracker, the mathematical model of measurement process is established, and the uncertainty of single point measurementis predicted according to the result.The experiments show that the actual measurement and simulation data are in good agreement. Therefore, the point measured by the tracker different weight distribution is given, andwhich is integrated into the SVD decomposition method,then the parameters of transfer station can be obtained. And compared with the ordinary SVD in RMS, the SVD method with the weight has a statistically significant optimization.Transfer station parameter is used to analyze the transfer station accuracy.The measurement errors existed in bothtwo stations are considered with TLS (total least squares),the affecting factors of precision are figured out, it laysthe foundation for the followup study to improve the precision of the transfer station.

    参考文献
    [1]俞慈君, 李江雄, 余锋杰, 等. 带工程约束的点匹配算法[J]. 机械工程学报, 2010, 46(5): 183190. YU C J,LI J X,YU F J,et al. 3D points registration algorithm with engineering constraints[J]. Journal of Mechanical Engineering,2010, 46(5): 183190.
    [2]郭英起, 唐彬, 张秋江, 等. 基于空间直角坐标系的高精度坐标转换方法研究 [J]. 大地测量与地球动力学, 2012, 32(3): 125128. GUO Y W,TANG B,ZHANG Q J,et al. Research on coordinte transformation method of high accuracy based on space rectangular coordinates system[J]Journal of Geodesy and Geodynamics, 2012, 32(3): 125128.
    [3]谢政委, 林嘉睿, 邾继贵, 等. 基于空间长度约束的坐标控制场精度增强方法[J]. 中国激光, 2014, 42(1): 108005. XIE ZH W,LIN J R,ZHU J G,et al. Accuracy enhancement method for coordinate control field based on space length constraint[J].Chinses Journal of Lasers, 2014, 42(1): 108005.
    [4]林嘉睿, 邾继贵, 张皓琳, 等. 激光跟踪仪测角误差的现场评价[J]. 仪器仪表学报, 2012, 33(2): 463 468. LIN J R,ZHU J G,ZHANG H L, et al. Field evaluation of laser tracker angle measurement error[J]. Chinese Journal of Scientific Instrument,2012, 33(2): 463468.
    [5]林嘉睿. 大型复杂物体组合测量方法研究[D]. 天津: 天津大学, 2012. LIN J R. Research on the combined measurement method of large complex objects[D].Tianjin:Tianjin University,2012.
    [6]陆珏, 陈义, 郑波. 总体最小二乘方法在三维坐标转换中的应用[J]. 大地测量与地球动力学, 2008, 28(5): 7781. LU J,CHEN Y,ZHENG B.Applying total least squares to threedimensionaldatum transformation[J].Journal of Geodesy and Geodynamics, 2008, 28(5): 7781.
    [7]MOGHARI M H, ABOLMAESUMI P. Maximum likelihood estimation of the distribution of target registration error[C].Medical Imaging, International Society for Optics and Photonics, 2008: 69180I69180I12.
    [8]PREDMORE C R. Bundle adjustment of multiposition measurements using the Mahalanobis distance[J]. Precision Engineering, 2010, 34(1): 113123.
    [9]PEGGS G N, MAROPOULOS P G, HUGHES E B, et al. Recent developments in largescale dimensional metrology[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2009, 223(6): 571595.
    [10]张福民, 曲兴华, 叶声华. 大尺寸测量中多传感器的融合[J]. 光学 精密工程, 2008, 16(7): 7320. ZHANG F M, QU X H, YE SH H. Multiple sensor fusion in large scale measurement[J]. Optics and Precision Engineering, 2008, 16(7): 7320.
    [11]张福民, 曲兴华, 叶声华. 基于蒙特卡罗仿真方法的大尺寸测量不确定度分析[J]. 计算机集成制造系统, 2009, 15(1): 184187. ZHANG F M, QU X H, YE SH H. Uncertainty analysis in largescale measurement based on Monte Carlo simulation method [J].Computer Integrated Manufacturing Systems, 2009, 15(1): 184187.
    [12]张福民, 曲兴华, 叶声华. 面向对象的大尺寸测量不确定度分析[J]. 光学 精密工程, 2008, 16(11): 22392243. ZHANG F M, QU X H, YE SH H. Uncertainty estimation of large 2 scale measurement for special fitting task[J]. Optics and Precision Engineering, 2008, 16(11): 22392243.
    [13]ZOBRIST T L, BURGE J H, DAVISON W B, et al. Measurements of large optical surfaces with a laser tracker[C].SPIE Astronomical Telescopes & Instrumentation. International Society for Optics and Photonics, 2008: 70183U70183U12.
    [14]HUGHES B, FORBES A, LEWIS A, et al. Laser tracker error determination using a network measurement[J]. Measurement Science and Technology, 2011, 22(4): 045103.
    [15]黄鹏, 王青, 俞慈君, 等. 飞机航炮的数字化校准分析[J]. 光学 精密工程, 2013, 21(12): 31023110. HUANG P,WANG Q,YU C J, et al. Accuracy analysis for digital boresighting of aircraft gun[J].Optics and Precision Engineering, 2013, 21(12): 31023110.
    [16]鲁铁定. 总体最小二乘平差理论及其在测绘数据处理中的应用[D]. 武汉: 武汉大学, 2010. LU T D. Research on the total least squares and its applications in surveying data processing[D].WuHan:Wuhan University.2010.
    [17]周欣然, 滕召胜, 蒋星军. 稀疏在线无偏置最小二乘支持向量机的预测控制[J]. 电子测量与仪器学报, 2011, 25(4): 331337. ZHOU X R,TENG ZH SH,JIANG X J. Predictive control using sparse online nonbias LSSVM[J]. Journal of Electronic measurement and Instrument. 2011, 25(4): 331337.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

樊印久,张福民,曲兴华,王俊龙.海洋工程装备制造现场大尺寸组网测量[J].电子测量与仪器学报,2017,31(3):369-376

复制
分享
文章指标
  • 点击次数:3111
  • 下载次数: 18532
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2017-07-20
文章二维码