伪随机码相关检测的MDSMAP定位算法
CSTR:
作者:
作者单位:

1.西安航空学院电子工程学院西安710077;2.西北工业大学电子信息学院西安710072

作者简介:

通讯作者:

中图分类号:

TP393;TN918.91

基金项目:

国家自然科学基金(61401499)、陕西省教育厅科研计划(16JK1395)资助项目


MDSMAP localization algorithm based on pseudo random code correlation detection
Author:
Affiliation:

1. Electrical Engineering Department, Xi’an Aeronautical University, Xi’an 710077, China; 2. School of Electronics and Information, Northwestern Polytechnic University, Xi’an 710072, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对当前无线传感器网络超声波设备定位精度不高的问题,改进了伪随机码相关的MDSMAP定位算法。首先利用伪随机码相关检测技术,对节点发射出的超声信号进行编码,有效地增加了节点的测距距离和测量精度。然后对于未能测量到距离的节点使用Euclidean和最短路径融合算法进行处理,然后使用MDSMAP算法生成节点的相对坐标,最后利用平面转换模型获取节点的最终坐标位置。仿真实验结果表明改进算法在不同网络规模和测距误差条件下均能够获得更高的定位精度和较小的定位误差。

    Abstract:

    Aiming at the problem that the equipment of wireless sensor network ranging distance is short and the positioning accuracy is not high, MDSMAP positioning algorithm based on pseudo random code correlation is proposed. Firstly, the ultrasonic signal emitted from the node is coded by using the pseudo random code correlation detection technology, the node distance and the accuracy are effectively increased. For a node failed to measure the distance, which is processed by using the Euclidean and the shortest path fusion algorithm, and then relative coordinate of node is generated by using the relative coordinates of MDSMAP algorithm. Finally, the final coordinate of node is obtained by using the plane transform model. The experiment results of simulation show that the improved algorithm can achieve a higher positioning accuracy and smaller positioning error under different network size and distance error conditions.

    参考文献
    相似文献
    引证文献
引用本文

刘洲洲,张亚杰.伪随机码相关检测的MDSMAP定位算法[J].电子测量与仪器学报,2017,31(2):245-250

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-07-20
  • 出版日期:
文章二维码