基于匹配滤波和自动阈值的眼底血管分割方法
作者:
作者单位:

1. 福州大学物理与信息工程学院福州350116; 2. 闽江学院福州350121;3. 福建省信息处理与智能控制重点实验室福州350121

中图分类号:

TP391.4;TN98

基金项目:

福建省中青年教师教育科研项目(JAT160398)资助


Retinal vessel segmentation method based on matched filtering and automatic threshold
Author:
Affiliation:

1. College of Physics and Information Engineering, Fuzhou University, Fuzhou 350116, China;2. Minjiang University, Fuzhou 350121, China; 3. Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, Fuzhou 350121, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    提出一种快速、简便、高效的眼底血管分割方法。分析眼底图像的灰度值分布和对比度变化,利用匹配滤波克服背景干扰,消除噪声影响,达到灰度均衡,实现眼底图像的亮度归一化。估计眼底图像中背景像素所占比例,利用直方图自动选择阈值,完成对眼底图像中血管的有效分割。在公开的眼底图像数据库上进行测试,该方法对眼底血管分割具有较好的性能指标。实验表明,提出的基于匹配滤波和阈值优化的眼底血管分割方法,准确率高、复杂度低,对眼科疾病的计算机辅助诊断有一定的实用价值。

    Abstract:

    A simple, rapid and efficient retinal vessels segmentation method is proposed. After a general analysis on gray value distribution and contrast changes of fundus images, the standardizing fundus images are obtained by using the matched filtering technique to overcome the interference of background and noise. Then, a threshold can be automatically selected to achieve the effective segmentation of blood vessels in the fundus images by estimating the proportion of the background pixels. A lot of tests show that the good performance is achieved in the public fundus images database. The experiment shows that the proposed method based on matched filtering and automatic threshold has strong practicability and high accuracy. It is useful for computeraided diagnosis of ocular diseases.

    参考文献
    [1]中华医学会眼科学会眼底病学组.我国糖尿病视网膜病变临床诊疗指南(2014年)[J].中华眼科杂志,2014, 50(11):851865. Chinese academy of medical science society of the ocular fundus disease group. Clinical diagnosis and treatment guidelines for diabetic retinopathy in China(2014) [J]. Chinese Journal of Ophthalmology, 2014, 50(11):851865.
    [2]WINDER R J, MORROW P J, MCRITCHIE I N, et al.Algorithms for digital image processing in diabetic retinopathy[J].Computer Medical Imaging and Graphics, 2009, 33(8):608622.
    [3]MARN D,AQUINO A, GEGU′NDEZARIAS M E,et al.A new supervised method for blood vessel segmentation in retinal images by using graylevel and moment invariantsbased features[J].IEEE Transactions on Medical Imaging, 2011, 30(1):146158.
    [4]朱承璋, 邹北骥, 向遥, 等.彩色眼底图像视网膜血管分割方法研究进展[J].计算机辅助设计与图形学学报, 2015, 27(11):20462057. ZHU CH ZH, ZOU B J, XIANG Y, et al. A survey of retinal vessel segmentation in fundus images[J]. Journal of ComputerAided Design & Computer Graphics, 2015, 27(11):20462057.
    [5]CHAUDHURI S, CHATTERJEE S, KATZ N, et al.Detection of blood vessels in retinal images using twodimensional matched filters[J].IEEE Transactions on Medical Imaging, 1989, 8(3):263269.
    [6]HOOVER A, KOUZNETSOVA V, GOLDBAUM M. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response[J].IEEE Transactions on Medical Imaging, 2000, 19(3):203210.
    [7]ZHANG B, ZHANG L, ZHANG L, et al.Retinal vessel extraction by matched filter with firstorder derivative of Gaussian[J].Computers in Biology and Medicine, 2010, 40(4):438445.
    [8]LI Q, YOU J, ZHANG D. Vessel segmentation and width estimation in retinal images using multiscale production of matched filter responses[J].Expert Systems With Applications, 2012, 39(9):76007610.
    [9]FORACCHIA M, GRISAN E, RUGGERI A. Luminosity and contrast normalization in retinal images[J].Medical Image Analysis, 2005, 9(3):179190.
    [10]PARK Y K, PARK S L, KIM J K. Retinex method based on adaptive smoothing for illumination invariant face recognition[J].Signal Processing, 2008, 88(8):19291945.
    [11]陈健, 郑绍华, 余轮, 等. 基于方向的多阈值自适应中值滤波改进算法[J]. 电子测量与仪器学报, 2013,27(2): 156161. CHEN J, ZHENG SH H, YU L,et al. Improved algorithm for adaptive median filter with multithreshold based on directional information [J]. Journal of Electronic Measurement and Instrument, 2013,27(2): 156161.
    [12]STAAL J, ABRàMOFF M D, NIEMEIJER M, et al. Ridgebased vessel segmentation in color images of the retina[J].IEEE Transactions on Medical Imaging, 2004, 23(4):501509.
    [13]FRAZ M M, REMAGNINO P, HOPPE A, et al. Blood vessel segmentation methodologies in retinal imagesa survey[J].Computer Methods and Programs in Biomedicine, 2012, 108(1):407433.
    [14]FRANKLIN S W, RAJAN S E. Computerized screening of diabetic retinopathy employing blood vessel segmentation in retinal images[J]. Biocybernetics and Biomedical Engineering, 2014, 34(2):117124.
    [15]WANG S, YIN Y, CAO G, et al. Hierarchical retinal blood vessel segmentation based on feature and ensemble learning[J]. Neurocomputing, 2015, 149(B):708717.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

曹新容,薛岚燕,林嘉雯,余轮.基于匹配滤波和自动阈值的眼底血管分割方法[J].电子测量与仪器学报,2017,31(1):51-57

复制
分享
文章指标
  • 点击次数:8726
  • 下载次数: 46592
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2017-07-20
文章二维码