压缩感知在电能质量扰动信号去噪中的应用
CSTR:
作者:
作者单位:

1. 上海理工大学光电信息与计算机工程学院上海200093; 2.北京东方振动和噪声技术研究所北京100085

作者简介:

通讯作者:

中图分类号:

TM712;TN98

基金项目:


Application of compressed sensing in power quality disturbance signals denoising
Author:
Affiliation:

1. School of OpticalElectrical Computer Engineering, University of Shanghai for Science and Technology,Shanghai 200093, China; 2. China Orient Institute of Noise & Vibration, Beijing 100085, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对电能质量信号去噪中阈值去噪存在信号失真,去噪效果不理想,阈值选取影响重构质量的问题,提出了一种基于压缩感知理论(compressed sensing,CS)的电能质量信号去噪新方法。CS去噪将扰动信号映射到低维空间,利用电能质量信号具有稀疏性可以重构,噪声信号不具备稀疏性不可重构的特点,应用正交匹配追踪(orthogonal matching pursuit algorithm,OMP)重构算法重构电能质量信号达到去噪目的。实验表明,CS电能质量信号去噪法优于传统的基于小波去噪的阈值去噪法,且信号不失真,具有扰动信号采集与压缩的同时完成去噪和易于实现的特点,为电能质量信号去噪提供了一种新的方法。

    Abstract:

    Aiming at the problem of signal distortion, nonideal denoising,and poor reconfiguration in the denoising method for power quality signal based on wavelet threshold, an improved denoising method for power quality signal based on the theory of compressed sensing(CS) is presented.CS denoising method mapsthe signal into a lowdimensional space firstly.Considering the characteristicthat the power quality signal can be represented sparsely and reconstructed while noise signal can’t berepresented sparsely.Then the original signal can be reconstructed with orthogonal matching pursuit algorithm (OMP),and the purpose of denoising is finally achieved.The simulation shows that the CS denoising method is superior to the traditional threshold denoising method based on wavelet denoising,and signal is not distortion.And the proposed method is easy to realize since it completes denoising at the same time of signal collection and compress, and provides a new method for the power quality signal denoising.

    参考文献
    相似文献
    引证文献
引用本文

刘通,马程远,沈松.压缩感知在电能质量扰动信号去噪中的应用[J].电子测量与仪器学报,2017,31(10):1653-1658

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-12-04
  • 出版日期:
文章二维码