Abstract:A human machine system for astronauts virtual training was designed and evaluated in this paper based on the real ground training tasks. This system can simulate kinds of manipulations, such as grasping, pulling and pushing. It can help to build a high level of immersion and improve the fidelity of the simulation training. This system is mainly composed of a 7 DOF haptic device, hardware systems and software systems. The haptic device, with a hybrid structure, has a 3 DOF translational mechanism, a 3 DOF rotational mechanism and a 1 DOF finger mechanism. The hardware systems includes the signalsobtaining of photoelectric encoders and reception of Force feedback parameters. Unity3Dbased virtual scenes have been built in the software systems. The software systems also connect the scenes and the haptic device. A control methodology based on MR brake was proposed in this paper. A MR brake was designed and used as actuator in this virtual training system. The whole system has a large workspace, reaching 0.4 m×0.4 m×0.5 m. It also has features of high position tracking accuracy and high output capability.It can also be widely used in rehabilitation training, virtual surgery and other fields.