EEMD在激光测云仪后向散射信号处理中的应用
作者:
作者单位:

1. 南京信息工程大学电子与信息工程学院南京210044; 2. 北京航空气象研究所北京100085

中图分类号:

P413;TN958.98

基金项目:

国家自然科学基金(61671248)、江苏省高校自然科学研究重大项目(15KJA460008)、江苏省“六大人才高峰”计划和江苏省“信息与通信工程”优势学科资助


Application of EEMD in laser ceilometer backscattering signal processing
Author:
Affiliation:

1. College of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; 2. Air Force Research Institute of Aviation Meteorology, Beijing 100085, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    激光测云仪后向散射信号是典型的非线性、非稳态信号,容易受噪声污染。针对该问题采用集成经验模态分解(EEMD)去噪算法进行处理,首先对含噪信号进行经验模态分解(EMD),将分解后的IMF分量进行自相关性分析,找出含噪占有量较大的IMF分量,对其进行SG(savitzkygolay)滤波,最后将滤波后的IMF分量和剩余分量进行信号的重构。经仿真实验结果表明,与传统的EMD方法相比,EEMD方法处理含噪信号后的输出信噪比提高了1.695 dB,均方误差平均降低了30%以上,说明该方法可以适用于非线性、非稳态的后向散射回波信号去噪处理,能为激光测云仪下一级的云底高度反演提供高信噪比的初始数据。

    Abstract:

    The backscattering signal of laser ceilometer as a typical nonlinear and nonstationary signal is susceptible to be polluted by noise. Aiming at this problem, the ensemble empirical mode decomposition (EEMD) denoising method is applied. Firstly, we use EEMD to decompose the noise signal and analyze the decomposition of the IMF component, then find out the larger component of IMF. Finally, we reconstruct the IMF component and the rest of the components signal after using SavitzkyGolay (SG) filter. The simulation and experiment results show that compared with the traditional empirical mode decomposition(EMD) method, the signaltonoise ratio based on the EEMD method after processing increases 1.695 dB, the mean square error decreases by an average of more than 30%. It is shown that the method is suitable for nonlinear and nonstationary characteristics for the scattering echo signal processing, and able to provide the high signaltonoise ratio of the initial data by laser ceilometer for the next level cloud base height inversion.

    参考文献
    [1]王青梅,张以谟,刘铁根,等.一种便携式激光测云仪的云底高度反演方法[J].强激光与粒子束,2005,17(9):13121316. WANG Q M, ZHANG Y M, LIU T G, et al. Portable lidar ceilometer for cloudbase height measurement[J]. High Power Laser and Particle Beams, 2005, 17(9): 13121316.
    [2]WU ZH H, HUANG N E. Ensemble empirical mode decomposition: A noise assisted data analysis method [J]. Advances in Adaptive Date Analysis, 2009, 1(1): 114.
    [3]VICHA T, DOHNAL M. Qualitative identification of chaotic system sbehaviours[J]. Chaos, Solitons& Fractals, 2008, 38(1): 7078.
    [4]刘增东,刘建国,陆亦怀,等.基于EMD的激光雷达信号去噪方法[J].光电工程,2008,35(6):7983. LIU Z D, LIU J G, LU Y H, et al. Denoising lidar signal based on EMD method[J].OptoElectronic Engineering, 2008,35(6):7983.
    [5]赵雯雯, 曾新雯. 一种新的EMD去噪方法[J]. 电子科 技, 2008, 21(5): 3032. ZHAO W W, ZENG X W. A new signal denoising method based on empirical mode decomposition (EMD) [J]. Electronic Science and Technology, 2008, 21(5):3032.
    [6]张强,行鸿彦.基于EMD方差特性的混沌信号自适应去噪算法[J].电子学报,2015,43(5):901906. ZHANG Q, XING H Y. Adaptive denoising algorithm based on the variance characteristics of EMD[J].Chinese Journal of Electronics,2015,43(5):901906.
    [7]刘春,杜雲.基于EMD分解在电火花数据分析的应用[J].电子测量与仪器学报,2016,30(5):731738. LIU CH,DU Y. Application of EMD based decomposition in electric spark data analysis[J].Journal of Electronic Measurement and Instrumentation,2016,30(5):731738.
    [8]蒋婷,滕召胜,顾红艳,等.基于EMD与分批估计的动态称量快速融合方法[J].仪器仪表学报, 2015, 36(6): 14061414. JIANG T,TENG ZH SH,GU H Y,et al. Fast fusion method of dynamic weighing based on EMD and batch estimation[J]. Chinese Journal of Scientific Instrument,2015,36(6): 14061414.
    [9]陈晓东,孙金华.大气电场仪场地因子修订及EMD分解分析[J].电子测量技术,2016,39(12): 9397. CHEN X D,SUN J H. Atmospheric electric field meter space factor Amendment and EMD decomposition analysis[J].Electronic Measurement Technology,2016,39(12): 9397.
    [10]行鸿彦,朱清清.基于集成经验模态分解的海杂波去噪[J].电子学报,2016,44(1): 17. XING H Y, ZHU Q Q. The sea clutter denoising based on ensemble empirical mode decomposition[J].Chinese Journal of Electronics,2016,44(1): 17.
    [11]行鸿彦, 金天力. 基于对偶约束最小二乘支持向量机的混沌海杂波背景中的微弱信号检测[J]. 物理学报, 2010,59 (1): 140146. XING H Y,JIN T L. Weak signal estimation in chaotic clutter using wavelet analysis and symmetric LS  SVM regression [J]. PhysicaSinica, 2010, 59 (1): 140146.
    [12]行鸿彦,徐伟.混沌背景中微弱信号检测的神经网络方法[J].物理学报,2007,56(7): 37713776. XING H Y, XU W. The neural networks method for detecting weak signals under chaotic background [J]. Acta Physica Sinica, 2007, 56(7): 37713776.
    [13]行鸿彦,龚平,徐伟.海杂波背景下小目标检测的分形方法[J].物理学报,2012,61(16):160504116050410. XING H Y, GONG P, XU W.Small target detection under the background of sea clutter fractal method[J].Chinese Journal of Physics,2012,61(16):160504116050410.
    [14]张毅坤,麻晓畅,华灯鑫,等.基于EMDDISPO的Mie散射激光雷达回波信号去噪方法研究[J].光谱学与光谱分析,2011,31(11):29963000. ZHANG Y K, MA X CH, HUA D X, et al.The mie scattering lidar return signal denoising research based on EMDDISPO[J].Spectroscopy and Spectral Analysis, 2011,31(11): 29963000.
    [15]郑发泰,华灯鑫,周阿维. Mie散射激光雷达大气回波信号经验模式分解算法的研究与应用[J].中国激光,2009,36(5):10681074. ZHENG F T, HUA D X, ZHOU A W. Empirieal mode decomposition algorithm researeh & applieation of Mie lidar atmospheric backseattering signal[J].Chinese Journal of Lasers, 2009, 36(5): 10681074.
    [16]何俊峰,刘文清,张玉钧,等. HHT在激光云高仪后向散射信号处理中的应用[J].红外与激光工程,2012,41(2): 397403. HE J F, LIU W Q, ZHANG Y J,et al. New method of lidar ceilometer backscatter signal processing based on HilbertHuang transform[J].Infrared and Laser Engineering,2012,41(2): 397403.
    相似文献
    引证文献
引用本文

张冬冬,郝明磊,行鸿彦. EEMD在激光测云仪后向散射信号处理中的应用[J].电子测量与仪器学报,2017,31(10):1589-1595

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 在线发布日期: 2017-12-04
文章二维码