基于臀部红外测量的神经网络体温算法研究
CSTR:
作者:
作者单位:

南京邮电大学自动化学院南京210023

作者简介:

通讯作者:

中图分类号:

TN219

基金项目:


Research on neural network body temperature algorithm based on hip infrared measurement
Author:
Affiliation:

College of Automation, Nanjing University of Posts and Telecommunications,Nanjing 210023,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    红外测体温的精度受到多种因素的影响,具有非线性和高度复杂性的特点。为了提高红外测体温的精度,分析了环境温度、测量距离、发射率等对红外测体温精度的影响。研究了基于臀部的红外体温测量方法,建立了由臀部体表温度转化为人体实际体温的温度场扩散模型,利用偏最小二乘法和人工神经网络对温度场模型进行优化补偿,有效的解决了各影响因素之间多重相关性的问题和补偿模型的非线性问题,提高了系统的可靠性。实验结果表明,所提出的红外测体温补偿模型测温误差范围在-0.12~0.11 ℃,具有更高的测量精度且适应性更强。

    Abstract:

    The accuracy of infrared body temperature measurement is affected by many factors, which is characterized by nonlinearity and high complexity. In order to improve the accuracy of infrared body temperaturemeasurement, the influence of ambient temperature, measurementdistance and emissivity on the accuracy of infrared body temperature measurement analyzed. The temperature field diffusion model of the hip surface temperature is transformed into the actual body temperature of the human body. The partial least squares method and the artificial neural network are used to optimize the temperature field model, which effectively solves the problem of the temperature field diffusion method. The problem of multiple correlation between influencing factors and the nonlinear problem of compensation modelare served effectively, and the reliability of the system is improved. The experimental results show that the temperaturemeasurement error of the proposed infrared temperature compensation model is -0.12~0.11 ℃, which has higher measurement accuracy and stronger adaptability.

    参考文献
    相似文献
    引证文献
引用本文

陈小惠,王桌培,王悠苒,张永芳,吕亚帅,王晶鑫.基于臀部红外测量的神经网络体温算法研究[J].电子测量与仪器学报,2017,31(9):1453-1458

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-11-06
  • 出版日期:
文章二维码