新型低功耗宽量程精密恒电位仪设计
作者:
作者单位:

1. 湖南大学电气与信息工程学院长沙410082; 2. 湖南大学材料科学与工程学院长沙410082

中图分类号:

TH832;TN721.2

基金项目:

国家自然科学基金(51777061)、中国博士后科学基金(2016M602405)、湖南省自然科学基金(2016JJ2022)、湖南大学交叉学科研究项目资助


Design of novel widerange precision potentiostat with low power dissipation
Author:
Affiliation:

1. College of Electrical and Information Engineering, Hunan University, Changsha 410082, China; 2. College of Materials Science and Engineering, Hunan University, Changsha 410082, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了满足电化学分析系统中宽量程范围内微电流的准确测量需求, 设计了一种新型低功耗宽量程精密恒电位仪, 提出了基于补偿式恒电位控制与两级比例电阻法相结合的微电流检测方法, 实现10-10~10-3 A量程范围内的准确电流测量。文中给出新型低功耗宽量程精密恒电位仪的硬件电路设计, 利用等效模型电路推导了电路传输特性, 并采用自制的三电极自制针状传感器和高精度电阻模拟生物电化学分析过程。仿真和实测结果表明, 新型低功耗宽量程精密恒电位仪信号输出稳定, 在10-10~10-3 A量程范围内的微电流检测相对误差小于1%, 据此设计的便携式恒电位仪已实际应用于组织工程液压生物反应器智能化监测系统。

    Abstract:

    In order to meet the requirement of accurate measurement of widerange microcurrent in the electrochemical analysis system, a novel widerange precision potentiostat with low power dissipation is designed in this paper. New detection method based on compensated potential control and twostage proportional resistance method is proposed to achieve accurate measurement of microcurrent in the widerange of 10-10~10-3 A. The hardware circuit design of novel widerange precision potentiostat with low power dissipation is proposed, the transmission characteristic of the circuit is deduced by equivalent model circuit, and the bioelectrochemical analysis process is simulated by using homemade threeelectrode needle sensor and high precision resistors. The simulation and experimental results show that the signal output of the novel widerange precision potentiostat with low power dissipation is stable, the relative error of microcurrent detection in the widerange of 10-10~10-3 A is less than 1%, and the novel portable potentiostat according to the proposed method has practical application in tissue engineering hydraulic bioreactor intelligent monitoring system.

    参考文献
    [1]NAZARI M H, MAZHABJAFARI H, LENG L, et al. CMOS neurotransmitter microarray: 96Channel integrated potentiostat with ondie microsensors[J]. IEEE Transactions on Biomedical Circuits and Systems, 2013, 7(3): 338348.
    [2]ZUO L, ISLAM S K, MAHBUB I, et al. A lowpower 1V potentiostat for glucose sensors[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2015, 62(2): 204208.
    [3]张洪川, 滕召胜, 林海军, 等. 低功耗单电源压控精密恒流源设计[J]. 仪器仪表学报, 2008, 29(12): 26782682. ZHANG H CH, TENG ZH SH, LIN H J, et al. Design of precision voltagecontrolled constant current source with low power dissipation singlesupply[J]. Chinese Journal of Scientific Instrument, 2008, 29(12): 26782682.
    [4]刘乃清, 张焱. 电阻误差测量电路设计分析[J]. 电子测量技术, 2015,38 (12): 2025. LIU N Q, ZHANG Y. The design and analysis of resistance error measurement circuit[J]. Electronic Measurement Technology, 2015, 38(12): 2025.
    [5]郝丽俊, 单纯玉, 白宝丹. 基于方波恒流源细胞电阻测量系统的设计实现[J]. 国外电子测量技术, 2015, 34(3): 6972. HAO L J, SHAN CH Y, BAI B D. Design and implementation of cell resistance measurement system based on square wave constant current source[J]. Foreign Electronic Measurement Technology, 2015, 34(3): 6972.
    [6]杨宇祥, 乔洋. 一种多频率同步信号激励电流源设计[J]. 仪器仪表学报, 2013, 34(4): 908913. YANG Y X, QIAO Y. Design of a multifrequency synchronized signal excitation current source[J]. Chinese Journal of Scientific Instrument, 2013, 34(4): 908913.
    [7]邓翔宇. 修正非线性误差的宽量程多电桥电阻测量电路设计[J]. 电子测量与仪器学报, 2016, 30(9): 14181424. DENG X Y. Design of multibridge resistance measurement circuit with widerange based on nonlinearity errors correction[J]. Journal of Electronic Measurement and Instrumentation, 2016, 30(9): 14181424.
    [8]ROKNSHARIFI M, ISLAM S K, ZHU K, et al. A low power, highly stabilized three electrode potentiostat for biomedical implantable systems[J]. Analog Integrated Circuits and Signal Processing, 2015, 83(2): 217229.
    [9]MAMUN K A A, ISLAM S K, HENSLEY D K, et al. A glucose biosensor using CMOS potentiostat and vertically aligned carbon nanofibers[J]. IEEE Transactions on Biomedical Circuits and Systems, 2016, 10(4): 807816.
    [10]杨东东, 马红光, 徐东辉, 等. 模拟电路参数变化检测最优混沌激励设计[J]. 仪器仪表学报, 2015, 36(4): 943950. YANG D D, MA H G, XU D H, et al. Design of the optimal chaotic excitation for the parameter change detection of analog circuit[J]. Chinese Journal of Scientific Instrument, 2015, 36(4): 943950.
    [11]BOERO C, OLIVO J, CARRARA S, et al. A selfcontained system with CNTsbased biosensors for cell culture monitoring[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2012, 2(4): 658671.
    [12]蔡强, 何苗, 施汉昌, 等. 用于水质自动分析的电化学生物传感器系统的研究与开发[J]. 仪器仪表学报, 2007, 28(12): 21582162. CAI Q, HE M, SHI H CH, et al. Research and development of electrochemical biosensor system for automatic waterborne pollutant analysis[J]. Chinese Journal of Scientific Instrument, 2007, 28(12): 21582162.
    [13]王晓俊, 周杏鹏, 王毅, 等. 一种宽量程高精度绝缘电阻测量仪设计[J]. 电子测量与仪器学报, 2012, 26(2): 155160. WANG X J, ZHOU X P, WANG Y, et al. Design of high precision IR meter with broad range[J]. Journal of Electronic Measurement and Instrument, 2012, 26(2): 155160.
    [14]KOUTILELLIS G D, ECONOMOU A, EFSTATHIOU C E. A potentiostat featuring an integrator transimpedance amplifier for the measurement of very low currents: Proofofprinciple application in microfluidic separations and voltammetry[J]. Review of Scientific Instruments, 2016, 87(3): 34101.
    [15]李文强, 黄刚, 杨录. 大量程全自动阻抗测量仪研究[J]. 仪器仪表学报, 2014, 35(4): 859865. LI W Q, HUANG G, YANG L. New study on widerange and automatic impedance measuring instrument[J]. Chinese Journal of Scientific Instrument, 2014, 35(4): 859865.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

柯盼盼,高云鹏,何湘衡,张韵琦,刘海蓉.新型低功耗宽量程精密恒电位仪设计[J].电子测量与仪器学报,2017,31(9):1467-1474

复制
分享
文章指标
  • 点击次数:3508
  • 下载次数: 7785
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2017-11-06
文章二维码