摘要:为降低数控机床热误差对数控钻攻中心的影响,提高工件的加工精度,解决不同工况下热误差预测精度不佳的问题。 在进给速度为 10 m/ min、环境温度 20°的工作条件下进行数控机床进给系统热误差测量实验,采用鹈鹕优化算法对神经网络进 行优化,确定 BP 神经网络的最优权值和阈值,建立进给系统热误差的 POA-BP 预测模型,并与传统 BP 神经网络和 GA-BP 神经 网络以及 SCN 随机配置网络进行实验对比分析。 结果表明,传统 BP 神经网络预测平均相对误差为 12. 23%,GA-BP 神经网络 平均相对误差为 11. 5%,SCN 预测模型预测平均相对误差为 12. 71%,POA-BP 预测模型预测平均相对误差为 9. 93%,精度有所 提升。 结论:提出的鹈鹕优化算法改进的神经网络在热误差预测中具有较强的有效性和精确性,可以提高进给运动精度,为热 误差补偿的实现提供理论指导。