基于改进 YOLOv7 的液晶面板电极缺陷视觉检测技术研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391;TH89

基金项目:

国家自然科学基金(51905215)项目资助


Research on visual detection technology for liquid crystal panel electrode defect by improved YOLOv7
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    电极质量对液晶面板的显示效果极其重要,针对液晶面板电极缺陷种类多、尺度小、背景复杂而导致难以检测的问题, 本文提出了一种基于改进 YOLOv7 的液晶面板电极缺陷视觉检测方法。 首先,将 CBAM 注意力模块嵌入到 YOLOv7 骨干网络 中,抑制背景信息干扰,强化缺陷特征;其次,采用跨层级连接操作,实现浅层网络与深层网络特征信息的融合;然后,将 C2f 模 块融入特征金字塔网络中以轻量化模型,提高训练速度;最后,使用 WIoU 替换 YOLOv7 模型的损失函数,减小低质量标注产生 的有害梯度,提高对缺陷的定位性能。 在自定义的电极缺陷数据集上进行测试,结果表明,该算法对电极大划伤、划伤、磕伤以 及脏污 4 类缺陷的平均检测精度达 67. 8%,单张检测时间为 5. 6 ms。

    Abstract:

    The quality of electrode is extremely important for the display effect of liquid crystal panel. To solve the problem of difficult detection due to the variety of electrode defects, small scale and complex background, an electrode defect detection method for liquid crystal panels is proposed based on improved YOLOv7 algorithm. Firstly, the CBAM attention module was embedded into the YOLOv7 backbone network to suppress background information interference and strengthen defect features. Secondly, the feature information of the shallow networks and deep networks was fused by cross-level connection operation. Then, the C2f module was integrated into the feature pyramid network to lightweight the model and improve the training speed. Finally, the WIoU was used to replace the loss function of the YOLOv7 model to reduce the harmful gradient caused by low quality labeling and improve the defect location performance. By a customized electrode defect dataset, the results showed that the proposed algorithm was able to achieve an average detection accuracy of 67. 8% for large scratch, scratch, shell and dirt on electrodes with a per-sheet detection time of 5. 6 ms.

    参考文献
    相似文献
    引证文献
引用本文

范先友,过 峰,俞建峰,化春键,蒋 毅,钱陈豪.基于改进 YOLOv7 的液晶面板电极缺陷视觉检测技术研究[J].电子测量与仪器学报,2023,37(9):225-233

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-11-28
  • 出版日期:
文章二维码