摘要:如今,利用合成的成对数据集训练的有监督模型泛化能力弱,在多变的实际水下环境中表现不佳,而无监督模型虽摆脱 了成对数据集的依赖,但生成图像可能因缺少特征信息导致图像视觉质量较差。 故以循环生成对抗网络为架构,提出多特征选 择与双向残差融合的水下图像增强方法。 一方面,设计以混合注意力为基础的多特征选择模块对水下图像的多种特征进行选 择,再由双向残差融合对传统 U 型跳跃连接进行优化,使图像特征高效表达,有效恢复水下图像的纹理与色彩。 另一方面,在 判别器中引入混合注意力并提出内容感知损失和风格感知损失,保证增强图像在全局内容、局部纹理、风格特征等方面和清晰 图像一致。 与现有的无监督和有监督模型相比较,该模型 PSNR 分别提高了 6%和 2%,SSIM 分别提高了 4%和 3%,对水下图像 有着显著的增强效果,在色彩真实度和饱和度上相比其他现有方法更加优秀。