基于轻量化网络和知识蒸馏的回转窑工况识别
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391. 4;TH69

基金项目:

国家自然科学基金(62373142,62033014,61673166)、湖南省自然科学基金(2021JJ50006,2022JJ50074)项目资助


Working condition recognition based on lightweight network and knowledge distillation for rotary kilns
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    回转窑烧成带图像蕴含丰富火焰信息,准确识别燃烧状态是回转窑优化控制的前提,基于卷积神经网络的方法可以快 速识别回转窑工况,提高回转窑自动化水平,但存在网络规模大,所需计算资源多的问题,为此提出了一种基于轻量化网络和知 识蒸馏的回转窑工况识别方法,在网络卷积层后引入协方差池化层改进教师模型和学生模型,以改进的轻量化网络 MobilenetV2 作为学生模型的主干网络,以改进的 Resnet50 作为教师模型的主干网络,通过构建混合蒸馏损失函数,将教师模型 蕴含的丰富分类标签信息迁移到学生模型中,并将蒸馏训练得到的学生模型作为回转窑工况识别模型,以提高网络对高相似火 焰图像的识别精度。 实验结果表明,经蒸馏后的学生模型总体识别准确率相较于原始模型提高了 3. 33%,对测试集中 3 种工况 的识别率分别达到了 93%、99%、90%,准确率和模型规模均优于目前其他主流网络模型,满足实际生产中实时、低成本要求。

    Abstract:

    The firing zone images of rotary kilns contain rich flame information and accurate combustion state recognition are the premise of optimal control for the rotary kilns. The working conditions can be quickly recognized, and the automation level of the rotary kilns can be improved through the convolutional neural network-based methods, but there are problems with large network size and high computational resources required. Therefore, a working condition recognition method based on lightweight network and knowledge distillation was proposed in this paper. The teacher model and the student model were improved by introducing the collaborator differential layer after the convolutional layer of the network. The improved lightweight network MobilenetV2 was used as the backbone network of the student model while the improved Resnet50 was used as the backbone network of the teacher model. The rich classification label information contained in the teacher model was transferred to the student model by constructing the mixed distillation loss function and the student model obtained by distillation training was used as the working condition recognition model to improve the recognition accuracy of the high similar rotary kiln flame images. The experimental results show that the overall recognition accuracy of the improved student model is increased by 3. 33% compared with the original model, and the recognition accuracy of the three working conditions in the test set reaches 93%, 99%, 90% respectively. The accuracy and network size are better than those of other mainstream networks, and the requirements of real time and low cost in actual production process are met.

    参考文献
    相似文献
    引证文献
引用本文

王 欣,邓章俊,秦 斌.基于轻量化网络和知识蒸馏的回转窑工况识别[J].电子测量与仪器学报,2023,37(9):149-159

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-11-28
  • 出版日期:
文章二维码