摘要:针对风电齿轮箱故障预警中数据信息挖掘不充分问题,提出一种基于图注意力和时间卷积网络的风电齿轮箱故障预警 方法。 分别从时间与空间尺度建立各特征点的物理联系,拓宽特征维度以提升故障预警精度。 图注意力网络构建不同数据测 点间的空间拓扑结构,遍历每个节点的相邻节点进行加权求和达到聚合信息的目的;时间卷积网络使用特殊的因果膨胀卷积和 残差网络,扩大感受野,提升时间特征捕捉能力。 以华北某风电场实际数据为例进行验证,结果表明,提出方法能够在故障发生 前 122 h 监测到风电齿轮箱的异常状态并发出预警信号;与其他方法进行对比,提出方法预警时间提前 52~ 63 h,模型预测误差 减小 1. 05% ~ 3. 76%;使用 t-SNE 和概率密度曲线提升结果可解释性。