摘要:针对甲状腺超声图像中背景干扰及数据集规模受限的问题,提出了基于注意力机制的甲状腺超声图像感兴趣区域定位 方法。 采用跨尺度注意力交互策略,改进定位模型的特征网络,提高不同尺度下各层级特征的融合效率;通过知识蒸馏实现特 征网络特征提取能力的强化,解决数据规模不足引起的网络过拟合问题;依据解剖学甲状腺形态统计分布设计 t 掩码,联合注 意力掩码计算特征损失,引导网络对甲状腺超声图像关键通道和像素信息的学习,实现对甲状腺超声图像感兴趣区域的定位。 实验结果表明,当 IoU 阈值为 0. 5 时,甲状腺超声图像感兴趣区域定位 AP 达到 92. 7%,对辅助医生进行甲状腺疾病的诊断具有 临床意义和价值。