摘要:光学元件缺陷会直接影响整个光学系统的性能,在光学元件缺陷检测中,划痕缺陷无疑是检测的难点,划痕缺陷存在着 尺寸小,长宽比却比较大,易受杂质影响的问题,本文将深度学习算法应用到光学元件缺陷检测,并根据划痕缺陷的特点,对 Mask R-CNN 网络模型进行了改进,使算法对划痕缺陷也有了更好的检测效果。 首先,将原有的 ResNet 更换为本文提出的 CSPRepResNet,并添加 ESE 注意力机制,提高了特征提取的能力并减少了计算量;其次,利用 K-means 算法重新聚类 anchor boxes 的长宽比例;再次,将目标检测的损失函数由 Cross Entropy 改为梯度均衡化的 Focal Loss,解决了正负样本不平衡问题的 同时,更有利于对困难样本的检测,还可以消除离群点的影响。 总体来说,检测的 mAP@ . 5 由原来的 52. 1%提高到 57. 3%,提 高了 5. 2%,且推理速度几乎不变,可见,改进后 Mask R-CNN 对光学元件划痕缺陷有更好的检测效果。