摘要:针对旋转机械零部件进行故障诊断的方法包括传统方法和深度学习,传统方法往往需要大量的专家经验,且诊断精度 欠佳,提出一种注意力机制改进多尺度深度卷积神经网络(multi-scale attention deep convolutional neural network, MADCNN)的故 障诊断方法。 MADCNN 方法提供 3 个卷积通道,每个通道差异化的核尺寸原理有效拓宽网络,实现了对原始时域数据的多尺 度特征提取。 同时, CBAM 对提取的特征进一步赋予权重,增强了模型对不同类型故障的区分度。 采用凯斯西储大学(Case Western Reserve University, CWRU)轴承故障数据和行星齿轮箱实验台故障数据分别进行实验验证,与传统深度卷积模型相比, 验证集准确率提高 7. 76%。 实验结果表明,该方法的诊断精度高,泛化性能好。