融合 A∗ 蚁群和动态窗口法的机器人路径规划
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP242. 6

基金项目:

安徽省自然科学基金(2108085MF220)、安徽高校协同创新项目(GXXT-2020-069)资助


Robot path planning based on A ∗ ant colony and dynamic window algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对蚁群算法在全局路径规划时无目的搜索、收敛慢和规划的路径不平滑等问题,本文提出了一种融合 A ∗ 蚁群和动 态窗口法(dynamic window algorithm, DWA)的平滑路径规划方法。 首先,对于传统蚁群算法,利用改进 A ∗ 算法非均匀分配初始 信息素,解决算法初期搜索无目的问题;给出算法自定义的移动步长和搜索方式,提高路径寻优效率;修改转移概率函数中的启 发函数值并增加障碍物影响因子,在避免死锁现象的同时加快收敛速度;采用二次路径优化策略,使得路径更短更平滑;其次在 动态窗口法的评价函数中引入动态避障评价子函数,提高路径的安全性。 仿真实验结果表明,改进 A ∗ 蚁群算法较传统蚁群算 法可减少 8. 75%的路径长度和 59%的转折点数,融合优化动态窗口法后,移动机器人既能保证在静态环境下规划出全局最优 的路径,又能实现动态环境下的路径规划,有效躲避环境中出现的动态障碍物。

    Abstract:

    Aiming at the problems of aimless search, slow convergence and unsmooth path planning of ant colony algorithm in global path planning, this paper proposes a smooth path planning method that combines A ∗ ant colony and dynamic window algorithm. First, for the traditional ant colony algorithm, the improved A ∗ algorithm is used to distribute initial pheromones unevenly to solve the aimless problem of initial search of the algorithm. The self-defined moving step size and searching method are given to improve the efficiency of path optimization. The heuristic function value in the transition probability function is modified and the obstacle influence factor is added to avoid deadlock and speed up the convergence. The secondary path optimization strategy is adopted to make the path shorter and smoother. Secondly, the dynamic obstacle avoidance evaluation sub function is introduced into the evaluation function of the dynamic window method to improve the path safety. The simulation results show that the improved A ∗ ant colony algorithm can reduce the path length by 8. 75% and the turning points by 59% compared with the traditional ant colony algorithm. After the dynamic window method is integrated and optimized, the mobile robot not only ensures the global optimal path planning in the static environment, but also realizes the path planning in the dynamic environment, effectively avoids dynamic obstacles in the environment.

    参考文献
    相似文献
    引证文献
引用本文

赵倩楠,黄宜庆.融合 A∗ 蚁群和动态窗口法的机器人路径规划[J].电子测量与仪器学报,2023,37(2):28-38

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-15
  • 出版日期:
文章二维码