融合前景注意力的轻量级交通标志检测网络
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391. 4

基金项目:

国家自然科学基金(62073155)项目资助


Lightweight traffic sign detection network with fused foreground attention
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对目标检测算法模型在交通标志检测上容易出现错检和漏检等问题,提出一种融合前景注意力的轻量级交通标志检 测网络 YOLOT。 首先引入 SiLU 激活函数,提升模型检测的准确率;其次设计了一种基于鬼影模块的轻量级骨干网络,有效提 取目标物特征;接着引入前景注意力感知模块,抑制背景噪声;然后改进路径聚合网络,加入残差结构,充分学习底层特征信息; 最后使用 VariFocalLoss 和 GIoU,分别计算目标的分类损失和目标间的相似度,使目标的分类和定位更加准确。 在多个数据集 上进行了大量实验,结果表明,本文方法的精度优于目前最先进方法,在 CCTSDB 数据集上进行消融实验,最终精度达到 98. 50%,与基线模型相比,准确率提升 1. 32%,同时模型仅 4. 7 MB,实时检测帧率达到 44 FPS。

    Abstract:

    A lightweight traffic sign detection network incorporating foreground attention, YOLOT, is proposed to address the problem that object detection algorithm models are prone to error and miss detection on traffic sign detection. Firstly, the introduction of the SiLU activation function to improve the accuracy of model detection; secondly, a lightweight backbone network based on the ghost module is designed to effectively extract object features; thirdly, introduction of foreground attention perception module to suppress background noise; fourthly, we improve the path aggregation network by adding a residual structure to the feature fusion process; finally, we use VariFocalLoss and GIoU to calculate the classification loss of objects and the similarity between objects. Extensive experiments are conducted on several datasets, and the results show that the accuracy of the method in this paper is better than the current state-of-the-art methods. Ablation experiments are conducted on the CCTSDB dataset, and the final accuracy reaches 98. 50%, with an accuracy improvement of 1. 32% compared to the baseline model, while the model is only 4. 7 MB, and the real-time detection frame rate reaches 44 frames per second.

    参考文献
    相似文献
    引证文献
引用本文

俞林森,陈志国.融合前景注意力的轻量级交通标志检测网络[J].电子测量与仪器学报,2023,37(1):21-31

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-15
  • 出版日期:
文章二维码