基于改进 YOLO v5 的电厂管道油液泄漏检测
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

上海市"科技创新行动计划"高新技术领域项目(21511101800)资助


Oil leakage detection of pipelines of power plants based on improved YOLO v5
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对电厂油库、化水车间等关键区域油液管道时常发生泄漏问题,本文提出了一种基于改进 YOLO v5 的电厂关键区域 管道油液泄漏检测方法,通过融入 CBAM 注意力机制模块,加强对管道油液泄漏区域图像的特征学习与特征提取,同时弱化复 杂背景对检测结果的影响;在此基础上运用了双向特征金字塔网络进行多尺度特征融合,减少冗余计算,同时提升算法对小目 标的检测能力;最后采用 Focal EIoU Loss 作为损失函数,使回归过程更加专注于高质量锚框,加快收敛速度,提高模型的回归精 度和鲁棒性。 实验结果表明,本文所提出的改进算法在真实样本中表现良好,平均准确率达 79. 6%,较原 YOLO v5s 目标检测 算法提高了 38. 4%,在电厂复杂背景下的误报率和漏报率明显下降,可有效应用于实际生产环境中。

    Abstract:

    In view of the frequent leakage of oil pipelines in key areas such as power plant oil depots and chemical water workshops, a pipeline leak detection method in key areas of power plants based on improved YOLO v5 is proposed. The improved YOLO v5 detection algorithm first incorporates CBAM module to strengthen the learning of regional features of pipeline oil leakage images. The CBAM makes the model more focused on the extraction of pipeline leakage features, and weakens the influence of complex backgrounds on detection results. Secondly, a bidirectional feature pyramid network is used for multi-scale feature fusion. It also reduces redundant calculation, and improves the detection ability of the algorithm for small targets. Finally, Focal EIoU Loss is used as the loss function to make the regression process more focused on high-quality anchor boxes. It improves the regression accuracy, speeds up the convergence speed, and improve the robustness of the model. The experimental results show that the improved algorithm performs well in real samples, with an average accuracy rate of 79. 6%, which is 38. 4% higher than the original YOLO v5s algorithm. The false positive rate and the false negative rate in the complex background of the power plant are significantly reduced. It shows that the improved YOLO v5 detection algorithm can be effectively applied in the actual production environment.

    参考文献
    相似文献
    引证文献
引用本文

彭道刚,潘俊臻,王丹豪,胡 捷.基于改进 YOLO v5 的电厂管道油液泄漏检测[J].电子测量与仪器学报,2022,36(12):200-209

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-03-29
  • 出版日期:
文章二维码