摘要:针对电厂油库、化水车间等关键区域油液管道时常发生泄漏问题,本文提出了一种基于改进 YOLO v5 的电厂关键区域 管道油液泄漏检测方法,通过融入 CBAM 注意力机制模块,加强对管道油液泄漏区域图像的特征学习与特征提取,同时弱化复 杂背景对检测结果的影响;在此基础上运用了双向特征金字塔网络进行多尺度特征融合,减少冗余计算,同时提升算法对小目 标的检测能力;最后采用 Focal EIoU Loss 作为损失函数,使回归过程更加专注于高质量锚框,加快收敛速度,提高模型的回归精 度和鲁棒性。 实验结果表明,本文所提出的改进算法在真实样本中表现良好,平均准确率达 79. 6%,较原 YOLO v5s 目标检测 算法提高了 38. 4%,在电厂复杂背景下的误报率和漏报率明显下降,可有效应用于实际生产环境中。