摘要:为解决行人检测中对遮挡行人的检测度低,漏检率较高的问题,提出一种基于注意力机制的 UAST-RCNN 网络,其在 Faster-RCNN 网络的基础上进行改进。 首先,选用 Swin-Transformer 作为骨干网络,通过采用一种窗口多头自注意力机制提升全 局感受野;然后,通过层级重采样模块,改进特征金字塔提升特征样本的质量,并且引入渐进式焦点损失函数平衡正负样本;最 后,在实验预处理阶段采用改进的数据预处理扩充 City Persons 数据集进行多尺度训练。 实验结果表明该算法对比原模型在遮 挡行人检测上有了明显提升,其中在检测精度(AP)提升了 6. 3%,漏检率(MR)下降了 4. 1%。 验证了所提算法在行人检测的 可行性,可满足遮挡行人场景的检测要求。