自适应 VMD 及其在状态跟踪及故障检测中的应用
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH17

基金项目:

云南省基础研究计划项目(202201AU070055)、云南省教育厅研究基金项目(2022J0131)资助


Adaptive VMD and its application in state tracking and fault detection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对变分模态分解(variational modal decomposition, VMD)的特征提取性能受到参数影响的问题,以及故障状态跟踪的 实时性较差的问题,提出一种状态预警线构造方法和自适应 VMD 方法并将其用于机械零件的故障检测。 首先,提取机械零件 全寿命振动信号的退化特征,基于 2σ 准则构造状态预警线来跟踪机械零件的退化状态并检测故障预警点。 然后,引入能量熵 和互信息构造适应度函数,通过蚱蜢优化算法(grasshopper optimization algorithm, GOA)构造自适应 VMD 模型来检测预警点附 近机械零件的故障状态。 结果表明,提出的状态预警线能更及时有效地检测出故障预警点,自适应 VMD 能更准确地检测出机 械零件故障,具有良好的应用价值。

    Abstract:

    Aiming at the problem that the feature extraction performance of variational modal decomposition (VMD) is affected by its parameters and the poor real-time performance of fault state tracking, an early warning approach and adaptive VMD method are proposed and applied to mechanical part fault detection. Firstly, the degradation characteristics of the full-life vibration signal of mechanical parts are extracted, and then the state warning line is constructed based on the 2σ criterion. Through the early warning line, the degradation state of mechanical parts can be tracked and the fault early warning points can be detected. Then, the energy entropy and mutual information are introduced to construct the fitness function, and an adaptive VMD model is constructed by grasshopper optimization algorithm (GOA) to detect the fault state of mechanical parts near the early warning point. The results show that the proposed state early warning line can detect the fault early warning points timelier and more effectively, and the adaptive VMD can detect the faults of mechanical parts more accurately, which have good application value.

    参考文献
    相似文献
    引证文献
引用本文

周成江,徐 淼,贾云华,叶志霞,杨 鹏,袁徐轶.自适应 VMD 及其在状态跟踪及故障检测中的应用[J].电子测量与仪器学报,2022,36(12):55-66

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-03-29
  • 出版日期:
文章二维码