摘要:针对 S700K 转辙机故障诊断有效特征提取困难,信号处理与分类算法难以联合优化的问题,提出了一维卷积神经网络 (1DCNN)与双向长短期记忆神经网络(bidirectional long short-term memory,BiLSTM)结合的转辙机故障诊断方法。 首先,对微机 监测系统采集的转辙机功率曲线进行处理;其次,通过卷积神经网络(convolution neural networks,CNN)的卷积层和池化层对处 理后的数据自适应提取故障特征;再经过扁平层(Flatten)把提取的故障特征作为 BiLSTM 层的输入,进一步挖掘深层次的特征; 最后使用 Softmax 函数实现智能故障诊断。 以某铁路局提供的真实数据验证模型,结果显示所提模型的精确率、召回率和 F1 值 等评价指标分别达到 98. 99%、98. 89%和 98. 89%,相较于其他经典故障诊断模型,1DCNN-BiLSTM 模型在保证训练速度较快的 情况下,将故障诊断的准确率至少提升了 1. 08%。