摘要:串联电弧故障是引发电气火灾的重要原因,对其有效检测能确保线路的正常运行和电气设备的可靠工作。 根据低压串 联电弧故障的检测难点,提出了基于非对称卷积神经网络的识别模型,用于适应性地提取串联电弧故障信息。 针对串联电弧故 障种类多、信息隐蔽等问题,首先利用格拉姆角差场时域数据处理方法,将负载模拟的时域信号经过极坐标变换、三角变换后映 射到二维矩阵中,以增加故障数据点的空间占有率和数据关联信息。 之后,为了不增加时间开销,同时改善模型的识别效能,使 用自适应非对称卷积、多通道离散注意力机制改进残差神经网络,作为低压线路中的串联电弧故障模型。 最后,利用容器封装 已训练好的故障识别模型,实现故障信息的快速分析。 验证表明,所提方法对串联电弧故障的识别率达到 99. 95%,具有良好的 识别效果。