基于神经网络的星敏支架指向倾角监测方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH712

基金项目:

北京市自然科学基金(4202027)、国家自然科学基金(61801030,62003346)项目资助


Star tracker bracket pointing inclination monitoring method based on neural network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对星敏支架热致变形导致其指向精度降低的问题,提出了一种基于神经网络的指向倾角监测方法。 首先,分析星敏 支架结构特征,搭建星敏支架指向倾角预测系统,采集星敏支架结构形变和倾角变化数据,并对实验数据进行预处理;其次,构 建深度神经网络模型,将星敏支架模型各测量点的应变信息作为输入变量,并使用 Adam 优化算法更新网络参数,经训练迭代 后得到指向倾角预测模型;然后针对传统深度神经网络收敛速度慢、容易产生局部最小值等局限性,使用遗传算法对深度神经 网络的超参数进行优化,以提升神经网络的训练速度;最后使用测试集数据对星敏支架指向倾角变化进行预测,分析该模型在 不同温度条件下对星敏支架指向倾角监测的准确率。 实验结果表明,优化后深度神经网络模型的指向倾角预测方法的平均误 差为 0. 20″,且倾角预测精度明显优于传统算法,证明利用深度学习方法实现星敏支架指向倾角监测具有可行性。

    Abstract:

    Aiming at the problem that the pointing accuracy of star tracker bracket is reduced due to thermal deformation, a pointing inclination monitoring method based on neural network is proposed. Firstly, the structural characteristics of the star tracker bracket are analyzed, the pointing inclination prediction system of the star tracker bracket is built, the structural deformation and inclination change data of the star tracker bracket are collected, and the experimental data are preprocessed. Secondly, the depth neural network model is constructed, the strain information of each measurement point of the star tracker bracket model is taken as the input variable, and the network parameters are updated by Adam optimization algorithm. After training iteration, the pointing inclination prediction model is obtained. Then, aiming at the limitation of slow convergence and easy to produce local minimum value of traditional deep neural network, genetic algorithm is used to optimize the hyperparameters of deep neural network to improve the training efficiency. Finally, the test set data is used to predict the change of the pointing angle of the star tracker bracket, and the accuracy of the model in monitoring the pointing angle of the star tracker bracket under different temperature conditions is analyzed. The experimental results show that the average error of the directional inclination prediction method of the optimized depth neural network model is 0. 20" , and the accuracy of inclination prediction is significantly better than the traditional algorithm, which proves that the deep learning method is feasible to realize the directional inclination monitoring of star tracker bracket.

    参考文献
    相似文献
    引证文献
引用本文

宋健峰,祝连庆,于明鑫,宋言明,张 旭.基于神经网络的星敏支架指向倾角监测方法[J].电子测量与仪器学报,2022,36(11):1-8

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-03-29
  • 出版日期:
文章二维码