基于 ACO 优化 BP 神经网络的变压器热点温度预测
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN06

基金项目:


Temperature prediction of transformer hot spot based on BP neural network optimized by ACO
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对变压器热点温度预测精度问题,提出一种蚁群算法( ant colony algorithm,ACO)结合改进主成分分析法( improved principal component analysis,IPCA)优化 BP 神经网络的热点温度预测模型。 首先采用 IPCA 去除数据冗余信息,并解决参数间 相关性问题,提高网络泛化能力。 为了避免 BP 神经网络容易陷入局部最优和收敛速度慢,利用 ACO 优化网络权值和与阈值, 加快算法速率,提高预测精度。 通过变压器温度实测数据验证,预测结果中的 mae、mse、mape 指标分别为 0. 065 7、0. 006 7、 0. 44%,预测精度和网络性能优于 IEEE、BP、IPCA-BP 模型,从而验证所提模型的有效性和可行性。

    Abstract:

    Aiming at the prediction accuracy of transformer hot spot temperature, the ant colony algorithm ( ACO) combined with improved principal component analysis ( IPCA) was proposed to optimize BP neural network model to predict hot spot temperature. Firstly, IPCA is used to remove data redundancy information and solve the correlation between parameters to improve the ability of network generalization. In order to avoid BP neural network that is easily falling into local optimum and slow convergence speed, ACO was used to optimize the weights and thresholds of the network to speed up the algorithm and improve the prediction accuracy. Verified by the measured transformer temperature data, the mae, mse and mape indexes in the predicted results are 0. 065 7, 0. 006 7 and 0. 44%, respectively. The prediction accuracy and network performance are better than those of IEEE, BP and IPCA-BP models, thus verifying the validity and feasibility of the proposed model.

    参考文献
    相似文献
    引证文献
引用本文

江 兵,杨 春,杨雨亭,巢一帆.基于 ACO 优化 BP 神经网络的变压器热点温度预测[J].电子测量与仪器学报,2022,36(10):235-242

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-03-29
  • 出版日期:
文章二维码