摘要:为有效提升高速铁路道岔维护效率和故障定位准确率,面向其故障文本数据,提出了一种基于字词融合的高速铁路道 岔多级故障诊断组合模型。 首先,建立高速铁路道岔专业词库,将文本表示为字向量与词向量并进行深度融合。 其次,考虑到 故障文本存在类别不均衡问题,采用 Borderline-SMOTE 算法对不均衡文本数据进行处理,优化故障文本数据分布。 接着使用 BiLSTM(Bi-directional long short-term memory)-CNN(convolutional neural network)的组合神经网络提取故障文本深度特征,最后 通过分类器实现智能故障诊断。 采用我国高速铁路道岔故障文本数据进行模型性能验证,结果显示所提模型的一级故障诊断 准确率达到 95. 62%,二级故障诊断准确率达到 93. 81%,证明多级故障诊断精度可达到理想效果。