摘要:针对现有方法对锂电池剩余使用寿命(RUL)预测精度不高,模型训练时间较长的问题,提出一种基于梯度提升决策树 算法(GBDT)结合网格搜索法(GS)的预测模型。 首先,分析锂电池的充放电循环过程,确定电压、电流、温度为可用健康因子 (HI);其次,处理历史数据中的异常值,并均值化可用健康因子数据为特征输入;最后,通过 GBDT 算法建立锂电池剩余使用寿 命预测模型,并采用 GS 优化模型参数。 基于 NASA 锂电池容量衰减数据,实验结果表明,模型在 RMSE、MAE、MAPE 评价指标 上相对其他方法均提升了约 10 倍,并且可将锂电池剩余使用寿命预测误差率控制在 0. 05 以内,训练时间缩减至 4. 5 s。