摘要:航空发动机作为飞机的主要动力源,其可靠性是保证飞机安全的关键。 剩余使用寿命预测对于提高航空发动机的可用 性和降低其寿命周期成本具有重要意义。 针对现有的预测算法存在对航空发动机多维数据特征提取不足的问题,提出了一种 基于注意力机制的卷积神经网络和双向长短期网络融合模型。 首先,采用卷积神经网络提取特征和双向长短期记忆网络获取 特征中的长短期依赖关系;其次,使用注意力机制来突出特征中的重要部分,提高模型预测的准确率。 为验证所提出方法的有 效性,在 C-MAPSS 数据集上进行了实验。 实验表明,模型可以准确地预测出航空发动机的剩余使用寿命,并比传统方法有着更 高的预测精度。