摘要:针对水域场景夜间能见度极低,难以实现人员目标检测与定位的问题,结合红外热成像技术与深度学习目标检测算法, 研究了一种黑暗环境下水域人员目标检测方法。 经过多场景实地采集,自主构建了一套热成像水域场景下的人员目标数据集 IR-YZ。 在对比经典目标检测方法在 IR-YZ 数据集上的性能的基础上,针对热成像特点与水域环境特点,提出了一种增强型轻 量级水上目标检测网络 IWPT-YOLO(infrared water person target-YOLO)。 实验结果表明,IWPT-YOLO 算法具有精确、快速、简洁 等优势,其模型大小为 93 MB,平均精度 mAP 达到了 85. 34%,检测速度达到了 20. 975 FPS,比经典算法 YOLOv3 网络与 SSD 网 络在模型大小、平均精度与检测速度上均有提高,验证了 IWPT-YOLO 算法对水域场景下的热成像人员目标具有更好的检测性 能,更明显的优势。