摘要:带钢表面缺陷检测已成为保证带钢生产质量的重要环节之一。 针对当前带钢缺陷检测算法精度有待提高等问题,提出 了一种基于 YOLOv5 网络改进的算法模型 MT-YOLOv5。 首先在主干网络中引入 Transformer 自注意力机制,使主干网络更聚焦 于图像全局特征信息的提取;其次采用 T-BiFPN 网络结构,将 Transformer 层与 BiFPN 网络结构相结合,进一步增强了图像浅层 特征信息与深层特征信息的融合;然后引入改进后的轻量化网络 RepVGG 替换主干网络中的部分卷积层,增强主干网络的特征 提取能力;最后增加预测层,检测不同尺度的目标。 实验结果表明,MT-YOLOv5 算法在 NEU-DET 数据集上的均值平均精度 (mAP)达到了 82. 4%,较原 YOLOv5s 算法提高了 5. 3%,检测速度为 65. 4 fps,更好地均衡了检测速度与检测精度。