基于 YOLOv5 的多分支注意力 SAR 图像舰船检测
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN957. 52

基金项目:

国家重点研发计划(2020YFB1600400)、科技部国家重点研发计划(2021YFB1600202)项目资助


Multi-branch attention SAR image ship detection based on YOLOv5
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对合成孔径雷达图像噪声大,成像特征不明显,尤其在面对海陆边界、港口码头、近岸岩礁等复杂场景,通常的检测算 法对 SAR 图像目标特征提取困难,导致检测精度不高,出现误检漏检等问题。 在 YOLOv5 的基础上设计了一种旋转的目标检 测方法,提出了多分支注意力模块可以跨维度的信息融合,能更好地提取 SAR 图像目标中的位置信息和语义信息,以提高检测 精度。 此外,由于旋转目标检测会产生边界不连续问题影响边界框的回归,因此,利用了圆形平滑标签的方法将角度参数从回 归问题转为分类问题,由此提高了精度。 最后在 HRSID、SSDD+数据集上进行了实验,精度分别达到 84. 98%和 90. 13%,比原始 的 YOLOv5 算法分别提升了 1. 29%和 2. 57%,实验结果证明所提算法的有效性。

    Abstract:

    In view of the high noise of synthetic aperture radar images and inconspicuous imaging features, especially in complex scenes such as sea and land boundaries, ports, and coastal reefs, it is difficult for common detection algorithms to extract target features from SAR images, resulting in low detection accuracy and leak detection, etc. This paper designs a rotating target detection method based on YOLOv5, and proposes that the multi-branch attention module can be used for cross-dimensional information fusion, which can better extract the location information and semantic information in SAR image targets. In addition, the boundary discontinuity will be caused by rotating target detection, which will affect the regression of the bounding box. Therefore, the circular smooth label method is used to transform the angle parameter from regression problem to classification problem, thus improving the accuracy. Finally, experiments are carried out on HRSID and SSDD+ datasets, and the accuracy reaches 84. 98% and 90. 13%, respectively, which is 1. 29% and 2. 57% higher than the original YOLOv5 algorithm, respectively. Experimental results prove the effectiveness of the proposed algorithm.

    参考文献
    相似文献
    引证文献
引用本文

胡 欣,马丽军.基于 YOLOv5 的多分支注意力 SAR 图像舰船检测[J].电子测量与仪器学报,2022,36(8):141-149

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-03-06
  • 出版日期:
文章二维码