摘要:针对在大样本数据集下,梯度下降法长期性存在着容易收敛到局部最优和收敛速度慢等问题,通过改变网络结构和梯 度下降过程,提出了一种动态衰减网络和动态衰减梯度下降算法。 在现有网络的基础上,层与层的每个神经元之间增加一条衰 减权重,同时在梯度下降过程中引入了衰减权重项。 衰减权重值随着迭代不断衰减,最终趋于 0。 由于衰减权重项的增加,可 以在梯度下降的前期加快梯度下降速度和收敛速度,同时可以避免越过最优解和在最优解附近振荡,提高了网络获得最优解的 概率。 通过 MNIST 、CIFAR-10 和 CIFAR-100 数据集的实验结果证实,所提出的动态衰减网络和算法,相比原始网络使用 Adam 和动量随机梯度下降法,测试准确度分别提高了 0. 2% ~ 1. 89%和 0. 75% ~ 2. 34%,同时具有更快的收敛速度。