多数据驱动人工神经网络的 IGBT 结温在线估计方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM93

基金项目:

天津市技术创新引导专项(20YDTPJC00510)项目资助


On line estimation of IGBT junction temperature based on multi data driven artificial neural network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    传统结温估计方法因其无法根据 IGBT 模块健康状态实时调校,从而导致当模块发生封装退化后无法准确估计结温。 因此,为解决在实际工况中模块封装退化造成的结温估计误差问题,建立了一个基于多数据驱动的以人工神经网络为主体的 IGBT 结温在线估计模型。 首先,确定饱和压降作为温敏电参数并研究其构成,分析其与集电极电流,芯片结温和封装退化之间 的耦合关系。 随后,为解决封装退化造成的饱和压降温度特性变化问题,提出结合米勒电压温度特性的优势,配合饱和压降与 集电极电流驱动人工神经网络算法构建结温估计模型,并通过搭建实验平台提取数据,完成模型的训练。 最终,通过与传统结 温估计方法对比估计误差,新模型将结温估计误差从 20%降低到了 5%以下。

    Abstract:

    Traditional junction temperature estimation methods cannot be adjusted according to the health status of IGBT module in real time, which leads to inaccurate junction temperature estimation when the module is degraded. Therefore, to solve the problem of junction temperature estimation error caused by module package degradation in actual conditions, this paper established a multi-data-driven IGBT junction temperature online estimation model with artificial neural network as main body. Firstly, the saturation voltage drop was determined as a thermoelectric parameter and its composition was studied. The coupling relationship between the saturation voltage drop, collector current, chip junction temperature and package degradation are analyzed. Then, to solve the problem of temperature characteristic change of saturation voltage drop caused by package degradation, a junction temperature estimation model was constructed by combining the advantages of Miller voltage temperature characteristic and the artificial neural network algorithm driven by saturation voltage drop and collector current. And the data were extracted by building an experimental platform to complete the training of the model. Finally, by comparing the estimation error with the traditional junction temperature estimation method, the new model reduces the estimation error from 20% to about 5%.

    参考文献
    相似文献
    引证文献
引用本文

赵泽宇,杜明星.多数据驱动人工神经网络的 IGBT 结温在线估计方法[J].电子测量与仪器学报,2022,36(7):223-229

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-03-06
  • 出版日期:
文章二维码