摘要:传统结温估计方法因其无法根据 IGBT 模块健康状态实时调校,从而导致当模块发生封装退化后无法准确估计结温。 因此,为解决在实际工况中模块封装退化造成的结温估计误差问题,建立了一个基于多数据驱动的以人工神经网络为主体的 IGBT 结温在线估计模型。 首先,确定饱和压降作为温敏电参数并研究其构成,分析其与集电极电流,芯片结温和封装退化之间 的耦合关系。 随后,为解决封装退化造成的饱和压降温度特性变化问题,提出结合米勒电压温度特性的优势,配合饱和压降与 集电极电流驱动人工神经网络算法构建结温估计模型,并通过搭建实验平台提取数据,完成模型的训练。 最终,通过与传统结 温估计方法对比估计误差,新模型将结温估计误差从 20%降低到了 5%以下。