摘要:现有基于深度学习的目标检测方法在面对空中消费级无人机时,存在鲁棒性差、准确率不足等问题。 对此,提出一种基 于特征增强的 YOLOv4 目标检测方法—FEM-YOLOv4。 首先,针对无人机低、小、慢等特点,改进骨干网络,降低下采样倍数,充 分利用包含细粒度信息的浅层特征;其次,加入特征增强模块(feature enhancement module),通过使用不同空洞率的多分支卷积 层结构,综合不同深度的语义信息和空间信息,增强小尺度无人机的细节语义特征;另外,利用多尺度融合的特征金字塔结构, 突出特征图包含的细节信息和语义信息,提升模型对无人机目标的预测能力;最后,采用 K-means++算法对无人机目标候选框 的尺寸进行聚类分析。 与 6 种目标检算法进行对比,实验结果表明,FEM-YOLOv4 算法的 mAP 和 Recall 分别达到 89. 48%、 97. 4%,优于其他算法,且平均检测速度为 0. 042 s。