改进型自适应全变分图像降噪模型
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP751. 1;TN911. 73

基金项目:

省级大学生创新训练项目(202210300147Y)资助


Improved adaptive total variational image denoising model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统全变分去噪方法峰值信噪比不高,迭代效率较低的缺点,提出了一种新的自适应全变分去噪模型。 首先,利用 差分曲率改进全变分方程的正则项指数以区分出噪声点;然后,结合水平集曲率和梯度模的性质,使平滑区和边缘区达到不同 的去噪效果,让新模型兼具保留边缘和平滑噪声的特点。 实验结果表明,与当前 3 种主流模型相比,新模型的峰值信噪比提高 了 1. 4 dB 以上,平均绝对误差也减少了 2. 5 以上,结构相似性平均提高了 0. 13,并且迭代效率至少提高了 1. 6 倍,更有利于实 际应用。

    Abstract:

    Aiming at the shortcomings of the traditional total variational denoising methods, such as low peak SNR and low iteration efficiency, a new adaptive total variational denoising model is proposed in this paper. Firstly, the regular exponent of the total variational equation is improved by using differential curvature to distinguish noise points. Then, combined with the properties of level set curvature and gradient mode, the smooth region and edge region can achieve different denoising effects, so that the new model can preserve both edge and smooth noise. Experimental results show that compared with the current three mainstream models, the new model improves the peak signal to noise ratio (PSNR) by more than 1. 4 dB, reduces the mean absolute error by more than 2. 5, improves the iteration efficiency by at least 1. 6 times, and increases equally the structural similarity by 0. 13, which is more beneficial to practical application.

    参考文献
    相似文献
    引证文献
引用本文

鲁思琪,周先春,汪志飞.改进型自适应全变分图像降噪模型[J].电子测量与仪器学报,2022,36(6):236-243

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-03-06
  • 出版日期:
文章二维码