改进卷积 Lenet-5 神经网络的轴承故障诊断方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH133. 33;TN06

基金项目:

甘肃省科技计划(21YF5GA072)、国家重点研发计划(2020YFB1713600)、甘肃省教育厅产业支撑计划(2021CYZC02)项目资助


Improved convolutional Lenet-5 neural network for bearing fault diagnosis
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对滚动轴承微弱信号在强噪声、变工况复杂环境下,难以实现有效的故障诊断问题,提出了一种改进卷积 Lenet-5 神 经网络的轴承故障诊断方法。 首先,对采集的一维时域轴承振动信号进行预处理转化成便于卷积操作的二维灰度图;其次,将 最基本的 Lenet-5 模型中的连续单向的传统卷积层改进为 Block1 模块、Block2 模块、Block3 模块,提取到更完整、更精准的特征 信息;最后,为了防止网络出现过拟合现象,采用 L2 正则化和 Dropout 优化网络。 为了验证本文所提方法在复杂工况环境的鲁 棒和泛化性能,利用滚动轴承数据集和变速箱实验数据集进行实验验证。 轴承数据集实验结果表明,本文所提出的方法在变噪 声实验中准确率平均值都在 99. 3%;在变负荷实验中,故障诊断准确率都高于 90. 26%;在变工况实验中,故障诊断准确率平均 值都高于 89. 01%;在变速箱数据集实验中,抗噪性故障诊断准确率高达 96. 3%。 采用改进的 Lenet-5 方法对滚动轴承 12 种故 障类型具有更好的分辨能力,在变工况下具有更好的抗干扰性和泛化性能。

    Abstract:

    Aiming at the problem that it is difficult to realize effective fault diagnosis for weak signals of rolling bearings in the complex environment of strong noise and variable working conditions, a bearing fault diagnosis method based on improved convolutional Lenet-5 neural network is proposed. Firstly, the collected one-dimensional time-domain bearing vibration signals are preprocessed and converted into two-dimensional grayscale images which are convenient for convolution operation. Secondly, the continuous one-way traditional convolutional layers in the most basic Lenet-5 model are improved into Block1 module, Block2 module and Block3 module to extract more concrete and accurate feature information. Finally, L2 regularization and Dropout optimization are used to avoid overfitting. In order to verify the robustness and generalization performance of the proposed method in complex working conditions, experimental validation was carried out using the rolling bearing dataset and the gearbox experimental dataset. The experimental results of the bearing dataset show that the average accuracy of the proposed method in the variable noise experiments is 99. 3%. In the variable load experiments, the average accuracy of fault diagnosis is higher than 90. 26%. In the variable operating conditions experiments, the average accuracy of fault diagnosis is higher than 89. 01%. In the gearbox dataset experiments, the fault diagnosis accuracy of anti-noise is up to 96. 3%. The improved Lenet-5 method has the better ability of fault diagnosis for 12 fault types of rolling bearings, and has better anti-interference and generalization performance under variable working conditions.

    参考文献
    相似文献
    引证文献
引用本文

赵小强,罗维兰.改进卷积 Lenet-5 神经网络的轴承故障诊断方法[J].电子测量与仪器学报,2022,36(6):113-125

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-03-06
  • 出版日期:
文章二维码