摘要:肺部电阻抗层析成像(EIT)电极阵列的设计是影响系统性能与成像效果的关键因素之一,目前多在规则形状物场、等 间距分布的前提条件下对电极阵列进行优化,却并不适用于肺部不规则边界的情况。 本文提出基于深度学习的肺部电阻抗层 析成像电极阵列优化方法,以电极位置为优化目标,以重建图像相对误差、图像相关系数、敏感场分布的均匀性以及敏感场 Hessian 矩阵的条件数为网络输入,以阵列电极位置为网络输出,基于 DNN 网络构建优化模型。 实验结果表明,在呼气末和吸 气末两种状态下,与传统的电极阵列均匀分布方法相比,基于深度学习的肺部 EIT 电极阵列优化方法将重建图像相关系数 (image correlation coefficient,ICC) 分别提高了 33. 17%、33. 86%,结构相似度( structural similarity,SSIM) 分别提高了 14. 5%、 14. 39%,峰值信噪比(peak signal-to-noise ratio,PSNR)分别提高了 26. 3%、28. 27%。 因此可以得出结论,与传统方法相比基于深 度学习的 EIT 电极阵列优化方法更适用于肺部 EIT 成像。