摘要:针对复杂的环境背景下不良信息的快速准确检测问题,提出了基于快速序列视觉呈现( rapid serial visual presentation, RSVP)的面向不良信息检测人机协作系统。 首先利用快速佩戴便携式采集系统采集了 12 名受试者的脑电数据;然后采用 Mallat 算法提取较低维度的时频特征,使用人工神经网络(ANN)和支持向量机(SVM)两种模型分类对比;最后在训练集中引入 不同次数的叠加平均数据以改善模型的分类性能。 实验结果表明,在含有 3 个目标的 60 张图像中平均正确输出至少 2 张目 标,AUC 值达到了 0. 9。 该系统在小批量数据集、环境变化复杂的不良图像信息检测中有着良好的性能,相较于人工检测提高 了效率。