利用加速度信号时频域特征的枪击识别研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391. 4; E920. 2

基金项目:

国家自然科学基金(61601127)、福建省工业和信息化厅(82318075)、福建省自然科学基金面上项目(2021J01580)资助


Research on recognition of gun shooting using acceleration signal’s features in both time and frequency domain
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    当前枪支射弹可靠检测及精确计数是枪弹管控的难点之一。 为提高基于加速度信号的射弹检测算法的精度和可靠性, 提出一种新的射击信号时域特征提取方法—时域分段特征提取法,可避免时域特征过度依赖于加速度瞬时尖峰的问题。 首先, 提取了枪击加速度样本信号的时域和频域各类统计特征。 然后,采用机器学习分类算法 K 近邻、逻辑回归、支持向量机以及决 策树和随机森林进行枪击识别建模。 最后,探索和比较各种单一特征对枪击事件识别模型性能的影响。 实验结果表明,所提取 的主波动域面积特征具有最优的区分度,能够在多数机器学习算法上达到 99%以上的分类准确率。

    Abstract:

    Currently, reliable detection and accurate counting of firearm projectiles is one of the difficult points of gun and ammunition management. To improve the accuracy and reliability of projectile detection algorithm based on acceleration signals, we propose a new time-domain feature extraction method for firearm firing signals: The time-domain segmental feature extraction method, which avoids the problem that time-domain features are overly dependent on acceleration transient spikes. Firstly, various statistical features of the sample signals of gunshot acceleration in the time and frequency domains have been extracted. Then machine learning classification algorithms K-nearest neighbors, logistic regression, support vector machines, decision trees and random forests are used for gunshot recognition modeling. Finally, the effects of various single features on the performance of gunshot recognition models are explored and compared. The experimental results show that the extracted main fluctuation domain area feature have the optimal discrimination and can achieve more than 99% classification accuracy on most machine learning algorithms.

    参考文献
    相似文献
    引证文献
引用本文

伍弘毅,陈志聪,吴丽君,何虔恩.利用加速度信号时频域特征的枪击识别研究[J].电子测量与仪器学报,2022,36(5):180-187

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-03-06
  • 出版日期:
文章二维码