改进 YOLOv4 的内丝接头密封面缺陷检测算法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391. 4;TH16

基金项目:

国家自然科学基金(61703268)项目资助


Improved YOLOv4’s algorithm for detecting defects on the sealing surface of inner wire joints
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统目标检测算法对内丝接头密封面的缺陷识别率不高的问题,提出利用改进的 YOLOv4 算法对其进行检测。 首 先使用 K-means++聚类算法对目标样本进行先验框参数优化,提高先验框与特征图的匹配度;其次在主干网络嵌入 SENet 注意 力机制模块,强化图像关键信息,抑制图像背景信息,提高不易识别缺陷的置信度;然后在网络颈部增加 SPP 模块,增强主干网 络输出特征的接受域,分离出重要的上下文信息;最后采用收集的内丝接头密封面缺陷数据集分别对改进前后的 YOLOv4 进行 训练,并分别测试模型效果。 实验结果表明,YOLOv4 检测内丝接头密封面缺陷的性能较好,但有部分小目标漏检;改进后的模 型对小目标缺陷的检测表现优异,均值平均精度(mAP)达到了 87. 47%,相比于原始 YOLOv4 提升了 10. 2%,平均检测时间为 0. 132 s,实现了对内丝接头密封面缺陷的快速准确检测。

    Abstract:

    Aiming at the problem of low recognition rate of traditional target detection algorithm for inner wire joint sealing surface defects, an improved YOLOv4 algorithm was proposed to detect the defects. Firstly, k-means++ clustering algorithm is used to optimize the parameters of the anchor frame of the target sample, and improve the matching degree between the anchor frame and the feature map; Secondly, the SENet attention mechanism module is introduced into the backbone network to strengthen the key information of the image, suppress the background information of the image, and improve the confidence of the defect that is not easy to identify; after that, the SPP module is added to the neck of the network to enhance the acceptance domain of the backbone network output features and separate the important context information; Finally, using the collected data set of inner wire joint sealing surface defects to train the original YOLOv4 and the improved YOLOv4, and the performance of models were tested respectively on test set. The experimental results show that the performance of YOLOv4 is good, but some small targets are missed; The improved model has excellent detection performance for small target defects, the mean average accuracy (mAP) reaches 87. 47%, which is 10. 2% higher than the original YOLOv4, and the average detection time is 0. 132 s, which realize the rapid and accurate detection of inner wire joint sealing surface defects.

    参考文献
    相似文献
    引证文献
引用本文

单明陶,高玮玮.改进 YOLOv4 的内丝接头密封面缺陷检测算法[J].电子测量与仪器学报,2022,36(5):120-127

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-03-06
  • 出版日期:
文章二维码